Open Access

Geochemical background - an environmental perspective

Bäckström, M., Karlsson, S., Bäckman, L., Folkeson, L., & Lind, B. (2004). Mobilization of heavy metals by deicing salts in a roadside environment. Water Research, 38, 720-732. DOI: 10.1016/j.watres.2003.11.006.10.1016/j.watres.2003.11.006Search in Google Scholar

Baize, D., & Sterckeman, T. (2001). Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, 264, 127-139. DOI: 10.1016/S0048-9697(00)00615-X.10.1016/S0048-9697(00)00615-XSearch in Google Scholar

Barth, S. (1998). Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Resources, 32(3), 685-690. DOI: 10.1016/S0043-1354(97)00251-0.10.1016/S0043-1354(97)00251-0Search in Google Scholar

Bates, R. L., & Jackson, J. A. (Eds.) (1984). Dictionary of Geological Terms. New York: Anchor Books. A Division of Random House, Inc.Search in Google Scholar

Carlon, C. (Ed.) (2007). Derivation methods of soil screening values in Europe. A review and evaluation of national procedures towards harmonization. European Commission. Ispra. Joint Research Centre.Search in Google Scholar

Church, S. E. (1993). Geochemical and lead-isotope data from stream and lake sediments, and cores from the upper Arkansas River drainage: Effects of mining at Leadville Colorado on heavy-metal concentration in the Arkansas River. U.S. Geol. Surv. Open-File Report 93-534.10.3133/ofr93534Search in Google Scholar

Church, S. E., Alpers, C. N., Vaughn, R. B., Briggs, P. H., & Slotton, D. G. (1999). Use of Lead Isotopes as Natural Tracers of Metal Contamination. In G. S. Plumlee & M. J. Logsdon (Eds.). The Environmental Geochemistry of Mineral Deposits, Part A. Processes, Techniques, and Health Issues. Reviews in Economical Geology 6A. (pp. 567-583). Littleton, CO: Society of Economic Geologists.Search in Google Scholar

Clarke, F. W. (1889). The relative abundance of the chemical elements. Bulletin of the Philosophical Society of Washington, XI, 131-142.Search in Google Scholar

Crommentuijn, T., Sijm, D., De Bruijn, J., van den Hoop, M., van Leeuwen, K., & van de Plassche, E. (2000). Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Journal of Environmental Management, 60, 121-143. DOI: 10.1006/jema.2000.0354.10.1006/jema.2000.0354Search in Google Scholar

Galán, E., González, I., & Fernández-Caliani, J. C. (2002). Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. The Science of the Total Environment, 286(1-3), 167-179. DOI: 10.1016/S0048-9697(01)00974-3.10.1016/S0048-9697(01)00974-3Search in Google Scholar

Gałuszka, A. (2006). Methods of determining geochemical background in environmental studies. Problems of Landscape Ecology, XVI/1, 507-519. (in Polish with English summary).Search in Google Scholar

Gałuszka, A. (2007a). A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 52, 861-870. DOI: 10.1007/s00254-006-0528-2.10.1007/s00254-006-0528-2Search in Google Scholar

Gałuszka, A. (2007b). Different approaches in using and understanding the term "geochemical background" - practical implications for environmental studies. Polish Journal of Environmental Studies, 16(3), 389-395.Search in Google Scholar

Górka, M., Jędrysek, M. O., & Strąpoć, D. (2008). Isotopic composition of sulphates from meteoric precipitation as an indicator of pollutant origin in Wrocław (SW Poland). Isotopes in Environmental and Health Studies, 44, 177-188. DOI: 10.1080/10256010802066307.10.1080/10256010802066307Search in Google Scholar

Grobéty, B., Gieré, R., Dietze, V., Stille, P. (2010). Airborne particles in the urban environment. Elements, 6(4), 229-234. DOI: 10.2113/gselements.6.4.229.10.2113/gselements.6.4.229Search in Google Scholar

Håkanson, L. (1980). Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975-1001.10.1016/0043-1354(80)90143-8Search in Google Scholar

Hawkes, H. E, & Webb, J. E. (1962). Geochemistry in mineral exploration. New York: Harper.Search in Google Scholar

Horckmans, L., Swennen, R., Deckers, J., & Maquil, R. (2005). Local background concentrations of trace elements in soils: a case study in the Grand Duchy of Luxemburg. Catena, 59, 279-304. DOI: 10.1016/j.catena.2004.09.004.10.1016/j.catena.2004.09.004Search in Google Scholar

Izbicki, J. A., Ball, J. W., Bullen, T. D., & Sutley, S. J. (2008). Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Applied Geochemistry, 23, 1325-1352. DOI: 10.1016/j.apgeochem.2007.11.015.10.1016/j.apgeochem.2007.11.015Search in Google Scholar

Jaakkola, T., Heinonen, O. J., Keinonen, M., Salmi, A., & Miettinen, J. K. (1983). Use of 206Pb/204Pb isotope ratio in lichens, air filter, incinerator ash and gasoline samples as pollution source indicator. International Journal of Mass Spectrometry and Ion Physics, 48, 347-350. DOI: 10.1016/0020-7381(83)87099-5.10.1016/0020-7381(83)87099-5Search in Google Scholar

Kelley, K. D., & Taylor, C. D. (1997). Environmental geochemistry of shale-hosted Ag-Pb-Zn massive sulfide deposits in northwest Alaska: natural background concentrations of metals in water from mineralized areas. Applied Geochemistry, 12, 397-409. DOI: 10.1016/S0883-2927(97)00009-7.10.1016/S0883-2927(97)00009-7Search in Google Scholar

Krouse, H. R., & Grinenko, V. A. (Eds.) (1991). Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. New York, …, Singapore: John Wiley & Sons.Search in Google Scholar

Lima, A. (2008). Evaluation of geochemical background at regional and local scales by fractal filtering technique: Case studies in selected Italian areas. In B. De Vivo, H. E. Belkin & A. Lima (Eds.) Environmental Geochemistry. Site characterization, Data Analysis and Case Histories. (pp. 135-152). Amsterdam: Elsevier.Search in Google Scholar

Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30, 159-165. DOI: 10.1016/S0160-4120(03)00157-0.10.1016/S0160-4120(03)00157-0Search in Google Scholar

Manecki, A. (1976). Aeromineralogy - Mineralogy of Atmospheric Dust. Mineralogia Polonica, 7, 91-97.Search in Google Scholar

Martínez, J., Llamas, J., de Miguel, E., Rey, J., & Hidalgo, M. C. (2007). Determination of the geochemical background in a metal mining site: example of the mining district of Linares (South Spain). Journal of Geochemical Exploration, 94, 19-29. DOI: 10.1016/j.gexplo.2007.05.001.10.1016/j.gexplo.2007.05.001Search in Google Scholar

Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background - can we calculate it? Environmental Geology, 39, 990-1000. DOI: 0.1007/s002549900084.Search in Google Scholar

Mudge, S. M. (2008). Environmental forensics and the importance of source identification. In: R. E. Hester & R. M. Harrison. (Eds.) Environmental Forensics (pp. 1-16). Cambridge: Royal Society of Chemistry.Search in Google Scholar

Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118.Search in Google Scholar

Norrström, A. C. (2005). Metal mobility by de-icing salt from an infiltration trench for highway runoff. Applied Geochemistry, 20, 1907-1919. DOI: 10.1016/j.apgeochem.2005.06.002.10.1016/j.apgeochem.2005.06.002Search in Google Scholar

Petelet-Giraud, E., Klaver, G., & Negrel, P. (2009). Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): Constraints by boron and strontium isotopes and gadolinium anomaly. Journal of Hydrology, 369, 336-349. DOI: 10.1016/j.jhydrol.2009.02.029.10.1016/j.jhydrol.2009.02.029Search in Google Scholar

Philp, R. P. (2007). The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environmental Chemistry Letters, 5, 57-66. DOI: 10.1007/s10311-006-0081-y.10.1007/s10311-006-0081-ySearch in Google Scholar

Portier, K. M. (2001). Statistical issues in assessing anthropogenic background for arsenic. Environmental Forensics, 2, 155-160. DOI: 10.1006/enfo.2001.0051.10.1006/enfo.2001.0051Search in Google Scholar

Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources of element in the environment: regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91-107. DOI: 10.1016/j.scitotenv.2004.06.011.10.1016/j.scitotenv.2004.06.011Search in Google Scholar

Reimann, C., Filzmoser, P., & Garret, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1-16. DOI: 10.1016/j.scitotenv.2004.11.023.10.1016/j.scitotenv.2004.11.023Search in Google Scholar

Reimann, C., & Garret, R. G. (2005). Geochemical background - concept and reality. Science of the Total Environment, 350, 12-27. DOI: 10.1016/j.scitotenv.2005.01.047.10.1016/j.scitotenv.2005.01.047Search in Google Scholar

Rudnick, R.L. & Gao, S. (2003). The Composition of the Continental Crust. In: H. D. Holland & K. K. Turekian. (Eds.) Treatise on Geochemistry. Vol. 3 (pp. 1-64). Oxford: Elsevier-Pergamon.Search in Google Scholar

Selinus, O. S., & Esbensen, K. (1995). Separating anthropogenic from natural anomalies in environmental geochemistry. Journal of Geochemical Exploration, 55, 55-66. DOI: 10.1016/0375-6742(95)00034-8.10.1016/0375-6742(95)00034-8Search in Google Scholar

Shazili, N. A. M., Kamaruzzaman, B. Y., Antonina, N. A., Zauyah, S., Bidai, J., Shamsudin, A. A., & Kamil, A. R. (2007). Interpretation of anthropogenic input of metals in the South China Sea bottom sediments of Terengganu (Malaysia) coastline using Al as a reference element. Aquatic Ecosystem Health & Management, 10(1), 47-56. DOI: 10.1080/14634980701201681.10.1080/14634980701201681Search in Google Scholar

Silva, S. R., Ging, P. B., Lee, R. W., Ebbert, J. C., Tesoriero, A. J., & Inkpen E. L. (2002). Forensic applications of nitrogen and oxygen isotopes of nitrate in an urban environment. Environmental Forensics, 3, 125-130. DOI: 10.1006/enfo.2002.0086.10.1006/enfo.2002.0086Search in Google Scholar

Slater, G. F. (2003). Stable isotope forensics - when isotopes work. Environmental Forensics, 4, 13-23. DOI: 10.1080/15275920303485.10.1080/15275920303485Search in Google Scholar

The regulation of the minister of the environment on the soil quality standards. (2002). Journal of the Acts (Dziennik Ustaw) of September 9, No. 165, item 1359.Search in Google Scholar

Tomlinson, D. L., Wilson, J. G. Harris C. R. & Jeffrey D. W. (1980). Problems in the assessments of heavy metal levels in estuaries and formation of a pollution index. Helgol Meeresunters, 33, 566-575.10.1007/BF02414780Search in Google Scholar

Turekian, K. K. & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72, 175-191.10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2Search in Google Scholar

Zalasiewicz, J., Williams, M., Steffen, W., & Crutzen, P. (2010). The New World of the Anthropocene. Environmental Science & Technology, 44(7), 2228-2231. DOI: 10.1021/es903118j.10.1021/es903118jSearch in Google Scholar

Zillioux, E. J., (2001). Arsenic background definition: introduction and objectives. Environmental Forensics, 2, 115-116. DOI: 10.1006/enfo.2001.0045.10.1006/enfo.2001.0045Search in Google Scholar

eISSN:
1899-8526
ISSN:
1899-8291
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other