Open Access

Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland


Cite

Allan, J., & Douglas, A.G. (1977). Variations in the content and distribution of n-alkanes in a series of carboniferous vitrinites and sporinites of bituminous rank. Geochimica et Comochimica Acta, 41(9), 1223-1230. DOI: 10.1016/0016-7037(77)90068-0.10.1016/0016-7037(77)90068-0Search in Google Scholar

Alonso, M.I., Valdés, A.F., Martínez-Tarazona, R.M., & Garcia, A.B. (2002). Coal recovery from fines cleaning wastes by agglomeration with colza oil: a contribution to the environment and energy preservation. Fuel Processing Technology, 75(2), 85-95. DOI: 10.1016/S0378-3820(01)00233-8.10.1016/S0378-3820(01)00233-8Search in Google Scholar

Amijaya, H., Schwarzbauer, J., & Littke, R. (2006). Organic geochemistry of the Lower Suban coal seam, South Sumatra Basin, Indonesia: Paleoecological and thermal metamorphism implications. Organic Geochemistry, 37(3), 261-279. DOI: 10.1016/j.orggeochem.2005.10.01210.1016/j.orggeochem.2005.10.012Search in Google Scholar

Barosz, S. (2002). Monitoring of the dismantling and reclamation of the coal waste dumps. Proceedings - VII Conference "Long term proecological undertakings in the Rybnik Coal Area", October 2002 (pp. 149-156). Rybnik, (in Polish).Search in Google Scholar

Barosz, S. (2003). Technical, economical and environmental conditions of management of coal waste dumps using the mines from the Rybnik Coal District as examples. Unpublished doctoral dissertation, Academy of Mining and Metallurgy, Cracow, Poland (in Polish).Search in Google Scholar

Beamish, B.B., Barakat, M.A., & George, J.D. St. (2001). Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. International Journal of Coal Geology, 45(2-3), 217-224. DOI: 10.1016/S0166-5162(00)00034-3.10.1016/S0166-5162(00)00034-3Search in Google Scholar

Beamish, B.B. (2005). Comparison of the R70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter. International Journal of Coal Geology, 64(1-2), 139-144. DOI: 10.1016/j.coal.2005.03.012.10.1016/j.coal.2005.03.012Search in Google Scholar

Bend, S.L., & Kosloski, D.M. (1993). A petrographic examination of coal oxidation. International Journal of Coal Geology, 24(1-4), 233-243. DOI: 10.1016/0166-5162(93)90012-Y.10.1016/0166-5162(93)90012-YSearch in Google Scholar

Berkowitz, N. (1985). The chemistry of coal. Amsterdam-Oxford-New York-Tokyo: Elsevier.Search in Google Scholar

Bishop, A.N., & Abbott, G.D. (1993). The interrelationship of biological maker maturity parameters and molecular yields during contact metamorphism. Geochimica et Cosmochimica Acta, 57(15), 3661-3668. DOI: 10.1016/0016-7037(93)90147-O.10.1016/0016-7037(93)90147-OSearch in Google Scholar

Bishop, A.N., & Abbott, G.D. (1995). Vitrinite reflectance and molecular geochemistry of Jurassic sediments: the influence of heating by Tertiary dykes (northwest Scotland). Organic Geochemistry, 22(1), 165-177. DOI: 10.1016/0146-6380(95)90015-2.10.1016/0146-6380(95)90015-2Search in Google Scholar

Bojakowska, I., & Sokołowska, G. (2001). Polycyclic aromatic hydrocarbons in hard coals from Poland. Geological Quarterly, 45(1), 87-92.Search in Google Scholar

Bray, E.E., & Evans, E.D. (1961). Distribution of n-parafins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22(1), 2-15. DOI: 10.1016/0016-7037(61)90069-2.10.1016/0016-7037(61)90069-2Search in Google Scholar

Brooks, K., Svanas, N., & Glasser, D. (1988). Evaluating the risk of spontaneous combustion in coal stockpiles. Fuel, 67(5), 651-656. DOI: 10.1016/0016-2361(88)90293-1.10.1016/0016-2361(88)90293-1Search in Google Scholar

Calemma, V., Del Piero, G., Rausa, R., & Girardi, E. (1995). Changes in optical properties of coals during air oxidation at moderate temperature. Fuel, 74(3), 383-388. DOI: 10.1016/0016-2361(95)93471-O.10.1016/0016-2361(95)93471-OSearch in Google Scholar

Carras, J.N., Day, S.J., Saghafi, A., & Williams, D.J. (2009). Greenhouse gases emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. International Journal of Coal Geology, 78(2), 161-168. DOI: 10.1016/j.coal.2008.12.001.10.1016/j.coal.2008.12.001Search in Google Scholar

Chandra, D. (1962). Reflectivity and microstructure of weathered coals. Fuel, 41, 185-193.Search in Google Scholar

Chemical Land 21. n-Alkanes. Retrieved May 10, 2011, from http://chemicalland21.com/industrialchem/organic/n-OCTADECANE.htmSearch in Google Scholar

Clayton, J.L., & Bostick, N.H. (1986). Temperature effects on kerogen and on molecular and isotropic composition of organic matter in Pierre Shale near an igneous dyke. Organic Geochemistry, 10(1-3), 135-143. DOI: 10.1016/0146-6380(86)90017-3.10.1016/0146-6380(86)90017-3Search in Google Scholar

Clemens, A.H., & Matheson, T.W. (1996). The role of moisture in the self - heating of low - rank coals. Fuel, 75(7), 891-895. DOI: 10.1016/0016-2361(96)00010-5.10.1016/0016-2361(96)00010-5Search in Google Scholar

Clemens, A.H., Matheson, T.W., & Rogers, D.E. (1991). Low temperature oxidation studies of dried New Zealand coals. Fuel, 70(2), 215-221. DOI: 10.1016/0016-2361(91)90155-4.10.1016/0016-2361(91)90155-4Search in Google Scholar

Cooper, J.R., Crelling, J.C., Rimmer, S.M., & Whittington, A.G. (2007). Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles. International Journal of Coal Geology, 71(1), 15-27. DOI: 10.1016/j.coal.2006.05.007.10.1016/j.coal.2006.05.007Search in Google Scholar

Cygankiewicz, J. (1996). Estimation of the development of self-ignition centers on the basis of the precise analysis of coal mine air samples. Scientific Papers of Central Mining Institute, Katowice, 14, 505-530 (in Polish).Search in Google Scholar

Ćmiel, S., & Misz, M. (2005). Petrographic changes in coal caused by coal wastes fires. Proceedings - LXXVI Meeting of Polish Geological Society, 14-16 September, 2005 (pp. 43-50). Rudy near Rybnik. Polish Geological Institute, Polish Geological Society (Warsaw), (in Polish).Search in Google Scholar

Didyk, B.M., Simoneit, B.R.T., Brassel, S.C., & Eglinton, G. (1978). Organic geochemical indicators of paleoenvironment conditions of sedimentation. Nature, 272, 216-222. DOI: 10.1038/272216a0.10.1038/272216a0Search in Google Scholar

Dzou, L.I.P., Noble, R.A., & Senftle, J.T. (1995). Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Organic Geochemistry, 23(7), 681-697. DOI: 10.1016/0146-6380(95)00035-D.10.1016/0146-6380(95)00035-DSearch in Google Scholar

Evans, K.A., Gandy, C.J., & Banwart, S.A. (2003). Mineralogical, numerical and analytical studies of the coupled oxidation of pyrite and coal. Mineralogical Magazine, 67(2), 381-398. DOI: 10.1180/002646103672010710.1180/0026461036720107Search in Google Scholar

Fabiańska, M. (2007). Organic geochemistry of brown coals from the selected Polish basins. Katowice: Publisher of University of Silesia (in Polish).Search in Google Scholar

Fabbri, D., Torri, C., Simoneit, B.R.T., Marynowski, L., Rushdi, A.I., Fabiańska, M.J. (2009). Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmospheric Environment, 43(14), 2286-2295. DOI: 10.1016/j.atmosenv.2009.01.030.10.1016/j.atmosenv.2009.01.030Search in Google Scholar

Faksenss, L.G., & Brandvik, P.J. (2008). Distribution of water soluble components from Arctic marine oil spills - A combined laboratory and field study. Cold Regions Science and Technology, 54(2), 97-105. DOI: 10.1016/j.coldregions.2008.03.005.10.1016/j.coldregions.2008.03.005Search in Google Scholar

Farrimond, P., Bevan, J.C., & Bishop, A.N. (1996). Hopanoid hydrocarbon maturation by an igneous intrusion. Organic Geochemistry, 25(3-4), 149-164. DOI: 10.1016/S0146-6380(96)00128-3.10.1016/S0146-6380(96)00128-3Search in Google Scholar

Farrimond, P., Taylor, A., & Telenæs, N. (1998). Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry, 29(5-7), 1181-1197. DOI: 10.1016/S0146-6380(98)00079-5.10.1016/S0146-6380(98)00079-5Search in Google Scholar

Finkelman, R.B. (2004). Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology, 59(1-2), 19-24. DOI: 10.1016/j.coal.2003.11.002.10.1016/j.coal.2003.11.002Search in Google Scholar

George, S.C. (1992). Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland. Organic Geochemistry, 18(5), 705-723. DOI: 10.1016/0146-6380(92)90097-H.10.1016/0146-6380(92)90097-HSearch in Google Scholar

Goodarzi, F. & Murchison, D.G. (1978). Influence of heating-rate on the anisotropy of carbonized vitrinites. Fuel, 57(5), 273-284. DOI: 10.1016/0016-2361(78)90004-2.10.1016/0016-2361(78)90004-2Search in Google Scholar

Goossens, H., Due, A., de Leeuw, J.W., van de Graaf, B., & Schenck, P.A. (1988a). The Pristane Formation Index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation-gas chromatography of unextracted samples. Geochimica et Cosmochimica Acta, 52(5), 1189-1193. DOI: 10.1016/0016-7037(88)90272-4.10.1016/0016-7037(88)90272-4Search in Google Scholar

Goossens, H., de Lange, F., de Leeuw, J.W., & Schenck, P.A. (1988b). The Pristane Formation Index, a molecular maturity parameter. Confirmation in samples from the Paris Basin. Geochimica et Cosmochimica Acta, 52(10), 2439-2444. DOI: 10.1016/0016-7037(88)90301-8.10.1016/0016-7037(88)90301-8Search in Google Scholar

Grantham, P.J. (1986). Sterane isomerisation and moretane/hopane ratios in crude oils derived from Tertiary source rocks. Organic Geochemistry, 9(6), 293-304. DOI: 10.1016/0146-6380(86)90110-5.10.1016/0146-6380(86)90110-5Search in Google Scholar

Grice, K., Lu, H., Atahan, P., Asif, M., Hallmann, C., Greenwood, P., Maslen, E., Tulipani, S., Williford, K., & Dodson, J. (2009). New insights into the origin of perylene in geological samples. Geochimica et Cosmochimica Acta, 73(21), 6531-6543. DOI: 10.1016/j.gca.2009.07.029.10.1016/j.gca.2009.07.029Search in Google Scholar

Grossman, S.L., Davidi, S., & Cohen, H. (1994). Emission of toxic and fire hazardous gases from open air coal stockpiles. Fuel, 73(7), 1184-1188. DOI: 10.1016/0016-2361(94)90257-7.10.1016/0016-2361(94)90257-7Search in Google Scholar

Hadden, R., & Rein, G. (2009). Ignition and suppression of smouldering coal fires in small-scale experiments. 6th Mediterranean Combustion Symposium, June 7-11, 2009. Ajaccio, Corsica, France. Retrieved May 10, 2011 ( http://www.see.ed.ac.uk/~grein/rein_papers/Hadden_SuppresingCoalfires_2009.pdfSearch in Google Scholar

Hadibarata, T. (2009). Oxidative degradation of benzo[a]pyrene by the ligninolytic fungi. In Y. Obayashi, T. Isobe, A. Subramanian, S. Suzuki, & S. Tanabe, (Eds.) Interdisciplinary Studies on Environmental Chemistry vol. 2 - Environmental Research in Asia for establishing a scientist's network (pp. 309-316). Tokyo: TERRAPUB.Search in Google Scholar

Hanak, B., & Nowak, G. (2008). Thermally altered coals in self-combusted mine dump from Upper Silesia coal basin. Proceedings from International Conference on Coal and Organic Petrology ICCP-TSOP Joint Meeting, September 21-27, 2008 (p. 105). Oviedo, Spain.Search in Google Scholar

Hatcher, P.G., & Clifford, D.J. (1997). The organic geochemistry of coal: from plant materials to coal. Organic Geochemistry, 27(5-6), 251-274. DOI: 10.1016/S0146-6380(97)00051-X.10.1016/S0146-6380(97)00051-XSearch in Google Scholar

Horsfield, B. (1989). Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography. Geochimica et Cosmochimica Acta, 53(4), 891-901. DOI: 10.1016/0016-7037(89)90033-1.10.1016/0016-7037(89)90033-1Search in Google Scholar

Hower, J.C., Henke, K., O'Keefe, J.M.K., Engle, M.A., Blake, D.R., & Stracher, G.B. (2009). The Tiptop coalmine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents. International Journal of Coal Geology, 80(1), 63-67. DOI: 10.1016/j.coal.2009.08.005.10.1016/j.coal.2009.08.005Search in Google Scholar

Huizinga, B.J., Tannenbaum, E., & Kaplan, I.R. (1987). The role of minerals in the thermal alteration of organic matter. IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments. Geochimica et Cosmochimica Acta, 51(5), 1083-1097. DOI: 10.1016/0016-7037(87)90202-X.10.1016/0016-7037(87)90202-XSearch in Google Scholar

Ingram, G.R., & Rimstidt, J.D. (1984). Natural weathering of coal. Fuel, 63(3), 292-296. DOI: 10.1016/0016- 2361(84)90002-4.Search in Google Scholar

International Committee for Coal and Organic Petrology (2001). New inertinite classification (ICCP system 1994). Fuel, 80(4), 459-471. DOI: 10.1016/S0016-2361(00)00102-2.10.1016/S0016-2361(00)00102-2Search in Google Scholar

International Committee for Coal and Organic Petrology (1998). New vitrinite classification (ICCP system 1994). Fuel, 77(5), 349-358. DOI: 10.1016/S0016-2361(98)80024-0.10.1016/S0016-2361(98)80024-0Search in Google Scholar

Ishiwatari, R., & Fukushima, K. (1979). Generation of unsaturated and aromatic hydrocarbons by thermal alteration of of young kerogen. Geochimica et Cosmochimica Acta, 43(8), 1343-1349. DOI: 10.1016/0016-7037(79)90124-8.10.1016/0016-7037(79)90124-8Search in Google Scholar

Itay, M., Hill, C.R. & Glasser, D. (1989). A study of the low temperature oxidation of coal. Fuel Processing Technology, 21(2), 81-97. DOI: 10.1016/0378-3820(89)90063-5.10.1016/0378-3820(89)90063-5Search in Google Scholar

Jiamo, F., Guoing, S., Jiayou, X., Eglington, G., Gowar, A.P., Ronfeng, J., Shanfa, F., & Pingan, P. (1990). Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments. Organic Geochemistry, 16(4-6), 769-779. DOI: 10.1016/0146-6380(90)90116-H.10.1016/0146-6380(90)90116-HSearch in Google Scholar

Jiang, C., Alexander, R., Kagi, R. I. & Murray, A.P. (1998). Polycyclic aromatic hydrocarbons in ancient sediments and their relationship to paleoclimate. Organic Geochemistry, 29(5-7), 1721-1735. DOI: 10.1016/S0146-6380(98)00083-7.10.1016/S0146-6380(98)00083-7Search in Google Scholar

Jones, J.C. (2000). On the role of times to ignition in the thermal safety of transportation of bituminous coals. Fuel, 79(12), 1561-1562. DOI: 10.1016/S0016-2361(00)00003-X.10.1016/S0016-2361(00)00003-XSearch in Google Scholar

Kaymakçi, E., & Didari, V. (2002). Relations between coal properties and spontaneous combustion parameters. Turkish Journal of Engineering and Environmental Sciences, 26(1), 59-64.Search in Google Scholar

Killops, S., & Killops, V. (2005). Introduction to organic geochemistry (2 ed.). Oxford: Blackwell Publishing.Search in Google Scholar

Kotarba, M.J., & Clayton, J.L. (2003): A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. International Journal of Coal Geology, 55(2-4), 73-94. DOI: 10.1016/S0166-5162(03)00082-X.10.1016/S0166-5162(03)00082-XSearch in Google Scholar

Van Krevelen, D.W. (1993). Coal Typology - Chemistry - Physics - Constitution. Amsterdam: Elsevier.Search in Google Scholar

Krishnaswamy S., Bhat S., Gunn R.D., & Agarwal P.K. (1996a). Low - temperature oxidation of coal. 1. Single - particle reaction - diffusion model. Fuel, 75(3), 333-343. DOI: 10.1016/0016-2361(95)00180-8.10.1016/0016-2361(95)00180-8Search in Google Scholar

Krishnaswamy, S., Agarwal, P.K., & Gunn, R.D. (1996b). Low - temperature oxidation of coal. 3. Modelling spontaneous combustion in coal stockpiles. Fuel, 75(3), 353-362. DOI: 10.1016/0016-2361(95)00249-9.10.1016/0016-2361(95)00249-9Search in Google Scholar

Kuenzer, C., Zhang, J., Tetzlaff, A., van Dijk, P., Voigt, S., Mehl, H., & Wagner, W. (2007). Uncontrolled coal fires and their environmental impact: Investigating two arid mining regions in north-central China. Applied Geography, 27(1), 42-62. DOI: 10.1016/j.apgeog.2006.09.007.10.1016/j.apgeog.2006.09.007Search in Google Scholar

Kwiecińska, B., & Petersen, H.I. (2004). Graphite, semi-graphite, natural coke, and natural char classification - ICCP System. International Journal of Coal Geology, 57(2), 99-116. DOI: 10.1016/j.coal.2003.09.003.10.1016/j.coal.2003.09.003Search in Google Scholar

Kwiecińska, B., Muszyński, M., Vleeskens, J., & Hamburg, G. (1995). Natural coke from the La Rasa Mine, Tineo, Spain. Mineralogia Polonica, 26(2), 3-14.Search in Google Scholar

Kyin, B., Maung, A.T., Begum, B., Haque, M., Hemalika, S., & Sudrajat, T. (2009). Remediation of Polycyclic Aromatic Hydrocarbons polluted soils using Fenton's reagent. Journal of Applied Sciences in Environmental Sanitation, V(N), 63-68.Search in Google Scholar

Liu, Ch., Li, S., Qiao, Q., Wang, J., & Pan, Z. (1998). Management of spontaneous combustion in coal mine waste tips in China. Water, Air, and Soil Pollution, 103(1-4), 441-444. DOI: 10.1023/A:1004922620264.10.1023/A:1004922620264Search in Google Scholar

Liu, L., & Zhou, F. (2010). A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. International Journal of Coal Geology, 82(1-2), 27-36. DOI: 10.1016/j.coal.2010.01.014.10.1016/j.coal.2010.01.014Search in Google Scholar

Leif, R.N., & Simoneit, B.R.T. (2000). The role of alkenes produced during hydrous pyrolysis of a shale. Organic Geochemistry, 31(11), 1189-1208. DOI: 10.1016/S0146-6380(00)00113-3.10.1016/S0146-6380(00)00113-3Search in Google Scholar

Lewan, M.D. (1992). Water as a source of hydrogen and oxygen in petroleum formation by hydrous pyrolysis. American Chemical Society, Division of Fuel Chemistry Preprints 37(4), 1643-1649.Search in Google Scholar

Lewan, M.D. (1997). Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta, 61(17), 3691-3723. DOI: 10.1016/S0016-7037(97)00176-2.10.1016/S0016-7037(97)00176-2Search in Google Scholar

Leythaeuser, D., & Schwarzkopf, Th. (1986). The pristane/n-heptadecane ratio as an indicator for recognition of hydrocarbon migration effects. Organic Geochemistry, 10(1-3), 191-197. DOI: 10.1016/0146-6380(86)90022-7.10.1016/0146-6380(86)90022-7Search in Google Scholar

Lu, P., Liao, G.X., Sun, J.H., & Li, P.D. (2004). Experimental research on index gas of the coal spontaneous at low-temperature stage. Journal of Loss Prevention in the Process Industries, 17(3), 243-247. DOI: 10.1016/j.jlp.2004.03.002.10.1016/j.jlp.2004.03.002Search in Google Scholar

Lu, S.-T., & Kaplan, I.R. (1992). Diterpanes, triterpanes, steranes, and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals. Geochimica et Cosmochimica Acta, 56(7), 2761-2788. DOI: 10.1016/0016-7037(92)90358-P.10.1016/0016-7037(92)90358-PSearch in Google Scholar

Machnikowska, H., Łuczak, A., & Kubacki, A. (2003). Effect of oxidation method on properties and structure of coals and lithotypes. Karbo 3, 157-164 (in Polish).Search in Google Scholar

Mastalerz M., & Mastalerz K. (2000). Volcanic and post-volcanic hydrothermal activity in the Intrasudetic Basin, SW Poland: implications for mineralization. In: M. Glickson & M. Mastalerz (eds.), Organic Matter and Mineralization: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis (pp. 185-203). Dordrecht: Kluwer Academic Publishers.Search in Google Scholar

Mastalerz, M., Drobniak, A., & Schimmelmann, A. (2009). Changes in optical properties, chemistry and micropore and mesophase characteristics of bituminous coal at the contact with dikes in the Illinois Basin. International Journal of Coal Geology, 77(3-4), 310-319. DOI: 10.1016/j.coal.2008.05.014.10.1016/j.coal.2008.05.014Search in Google Scholar

Mastalerz, M., Drobniak, A., Hower, J.C., & O'Keefe, J.M.K., (2010). Spontaneous combustion and coal petrology. In: G.B. Stracher, E.V. Sokol, & A. Prakash (Eds), Coal and Peat Fires: A Global Perspective: Volume 1: Coal - Geology and Combustion (pp. 47-62). Amsterdam: Elsevier.Search in Google Scholar

Meyers, P.A., & Simoneit, B.R.T. (1999). Effects of extreme heating on the elemental and isotopic compositions of an upper cretaceous coal. Organic Geochemistry, 30(5), 299-305. DOI: 10.1016/S0146-6380(99)00015-7.10.1016/S0146-6380(99)00015-7Search in Google Scholar

Miczajka, M. (2008). Information from the Chwałowice Coal Mine staff. Unpublished.Search in Google Scholar

Misra, B.K., & Singh, B.D. (1994). Susceptibility to spontaneous combustion of Indian coals and lignites: an organic petrography authopsy. International Journal of Coal Geology, 25(3-4), 265-286. DOI: 10.1016/0166-5162(94)90019-1.10.1016/0166-5162(94)90019-1Search in Google Scholar

Misz, M., Fabiańska, M., & Ćmiel, S. (2007). Organic components in thermally altered coal waste: Preliminary petrographic and geochemical investigations. International Journal of Coal Geology, 71(4), 405-424. DOI: 10.1016/j.coal.2006.08.009.10.1016/j.coal.2006.08.009Search in Google Scholar

Misz-Kennan, M., Kus, J., Flores, D., Avila, C., Christanis, K., Hower, J., Kalaitzidis, S., O'Keefe, J., Marques, M., Pusz, S., Ribeiro, J., Suárez-Ruiz, I., Sýkorová, I., Wagner, N., & Životić, D. (2009). Report of the 2009 Round Robin Exercise of the Self-heating of Coal and Coal Wastes Working Group. ICCP News Letter, 48, 58-60.Search in Google Scholar

Misz-Kennan, M., & Fabiańska, M. (2010). Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). International Journal of Coal Geology, 81(4), 343-358. DOI: 10.1016/j.coal.2009.08.009.10.1016/j.coal.2009.08.009Search in Google Scholar

Misz-Kennan, M., & Tabor, A. (2011). The thermal history of selected coal waste dumps in the Upper Silesian Coal Basin (Poland). In G.B. Stracher, E.V. Sokol & A. Prakash (Eds.), Coal and Peat Fires: A Global Perspective, Volume 3 - Case Studies. Amsterdam: Elsevier, Scheduled for publication in 2011 (or early 2012).Search in Google Scholar

Misz-Kennan, M., Gardocki, M., & Tabor, A. (2011a). Fire Prevention in Coal Waste Dumps as Exemplified by the Rymer Cones Dump (Upper Silesian Coal Basin, Poland). In G.B. Stracher, E.V. Sokol & A. Prakash (Eds.), Coal and Peat Fires: A Global Perspective, Volume 3 - Case Studies. Amsterdam: Elsevier, Scheduled for publication in 2011 (or early 2012).Search in Google Scholar

Misz-Kennan, M., Fabiańska, M., & Ciesielczuk, J. (2011b). Thermal transformations of the waste rocks at the Starzykowiec coal waste dump, Poland. In G.B. Stracher, E.V. Sokol & A. Prakash (Eds.), Coal and Peat Fires: A Global Perspective, Volume 3 - Case Studies. Amsterdam: Elsevier, Scheduled for publication in 2011 (or early 2012).Search in Google Scholar

Moghtaderi, B., Dlugogorski, B.Z., & Kennedy, E.M. (2000). Effect of wind flow on the self-heating characteristics of coal stockpiles. Process Safety and Environmental Protection, 78(6), 445-453. DOI: 10.1205/095758200530998.10.1205/095758200530998Search in Google Scholar

Murchison, D. (2006). The influence of heating rates on organic matter in laboratory and natural environments. International Journal of Coal Geology, 67(3), 145-157. DOI: 10.1016/j.coal.2005.11.00510.1016/j.coal.2005.11.005Search in Google Scholar

Ndaji, F.E., & Thomas, K.M. (1995). The effect of oxidation on the macromolecular structure of coals. Fuel, 74(6), 932-937. DOI: 10.1016/0016-2361(95)00019-2.10.1016/0016-2361(95)00019-2Search in Google Scholar

Nelson, C.R. (1989). Chemistry of coal weathering. Coal Science and Technology 14, Amsterdam, Oxford, New York, Tokyo: Elsevier.Search in Google Scholar

Norgate C.M., Boreham C.J., & Wilkins A.J. (1999): Changes in hydrocarbon maturity indices with coal rank and type, Biller Coalfield, New Zealand. Organic Geochemistry, 30(8), 985-1010. DOI: 10.1016/S0146-6380(99)00082-0.10.1016/S0146-6380(99)00082-0Search in Google Scholar

O'Keefe, J.M.K., Hanke, K.H., Hower, J.C., Engle, M.A., Stracher, G.B., Stucker, J.D., Drew, J.W., Staggs, W.D., Murray, T.M., Hammond III, M.L., Adkin, K.D., Mullins, B.J., & Lemley, E.W. (2010). CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA. Science of the Total Environment, 408(7), 1628-1633. DOI: 10.1016/j.scitotenv.2009.12.005.10.1016/j.scitotenv.2009.12.005Search in Google Scholar

Oros, D.R. & Simoneit, B.R.T. (2000). Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel, 79(5), 515-536. DOI: 10.1016/S0016-2361(99)00153-2.10.1016/S0016-2361(99)00153-2Search in Google Scholar

Ourisson, G., Albrecht, P., & Rohmer, M. (1979). The hopanoids. Paleochemistry of a group of natural products. Pure and Applied Chemistry, 51(4), 709-729.10.1351/pac197951040709Search in Google Scholar

Pan, C., Geng, A., Zhong, N., Liu, J., & Yu, L. (2009). Kerogen pyrolysis in the presence and absence of water and minerals: Amounts and compositions of bitumen and liquid hydrocarbons. Fuel, 88(5), 909-919. DOI: 10.1016/j.fuel.2008.11.024.10.1016/j.fuel.2008.11.024Search in Google Scholar

Pan, C., Geng, A., Zhong, N., & Liu, J. (2010). Kerogen pyrolysis in the presence and absence of water and minerals: Steranes and triterpenoids. Fuel, 89(2), 336-345. DOI: 10.1016/j.fuel.2009.06.032.10.1016/j.fuel.2009.06.032Search in Google Scholar

Pancost, R.D., Baas, M., van Geel, B., & Sinninghe Damste, J.S. (2002). Biomarkers proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog. Organic Geochemistry, 33(7), 675-690. DOI: 10.1016/S0146-6380(02)00048-7.10.1016/S0146-6380(02)00048-7Search in Google Scholar

Parafiniuk, J., & Kruszewski, Ł. (2009). Ammonium minerals from burning coal-dumps of the Upper Silesian Coal Basin (Poland). Geological Quarterly, 53(3), 341-356.Search in Google Scholar

Peters, K.E., Walters, C.C., & Moldowan, J.M. (2005). The Biomarker Guide. vol.2. Biomarkers and Isotopes in Petroleum Exploration and History. (2 ed.). Cambridge, New York, Melbourne: Cambridge University Press.Search in Google Scholar

Pickering, R.W. (1999). A toxicological review of Polyaromatic Hydrocarbons. Journal of Toxicology: Cutaneous and Ocular Toxicology, 18(2), 101-135. DOI: 10.3109/15569529909037562.10.3109/15569529909037562Search in Google Scholar

Pickering, R.W. (2000). Toxicity of Polyaromatic Hydrocarbons other than benzo(a)pyrene: a review. Journal of Toxicology: Cutaneous and Ocular Toxicology, 19(1), 55-67. DOI: 10.3109/15569520009051478.10.3109/15569520009051478Search in Google Scholar

Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkelman, R.B., Blake, D.R., McCormack, J.K., & Schroeder, P. (2007). The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 72(2), 124-140. DOI: 10.1016/j.coal.2007.01.001.10.1016/j.coal.2007.01.001Search in Google Scholar

Radke, M. (1987). Organic geochemistry of aromatic hydrocarbons. In J. Brooks, D. Welte, (Eds.), Advances in Petroleum Geochemistry, vol. 2 (pp 141-205). London, Academic Press.Search in Google Scholar

Radke, M., & Welte, D.H. (1983). The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons. In: M. Bjoroy, P. Albrecht, C. Cornford, K. de Groot, G. Eglinton, E. Galimov, D. Leythaeuser, R. Pelet & G. Speers (Eds), Advances in Organic Geochemistry 1981 (pp. 504-512). Chichester: John Wiley and Sons, Inc.Search in Google Scholar

Radke, M., Willsch, H., Leythaeuser, D., & Teichmüller, M. (1982). Aromatic components of coal: relation of distribution pattern to rank. Geochimica et Cosmochimica Acta, 46(10), 1831-1848. DOI: 10.1016/0016-7037(82)90122-3.10.1016/0016-7037(82)90122-3Search in Google Scholar

Radke, M., Welte, D.H., & Willsch, H. (1986). Maturity parameters based on aromatic hydrocarbons: influence of organic matter type. Organic Geochemistry, 10(1-3), 51-63. DOI: 10.1016/0146-6380(86)90008-2.10.1016/0146-6380(86)90008-2Search in Google Scholar

Radke, M., Willsch, H., & Teichmüller, M. (1990). Generation and distribution of aromatic hydrocarbons in coals of low rank. Organic Geochemistry, 15(6), 539-563.10.1016/0146-6380(90)90101-5Search in Google Scholar

Radke, M., Rullkötter, J., & Vriend, S.P. (1994). Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects. Geochimica et Cosmochimica Acta, 58(17), 3675-3689. DOI: 10.1016/0016-7037(94)90158-9.10.1016/0016-7037(94)90158-9Search in Google Scholar

Raymond, A.C., & Murchison, D.G. (1992). Effects of igneous activity on molecular-maturation indices in different types of organic matter. Organic Geochemistry, 18(5), 725-735. DOI: 10.1016/0146-6380(92)90098-I.10.1016/0146-6380(92)90098-ISearch in Google Scholar

Ribeiro, J., Ferreira da Silva, E., & Flores, D. (2010). Burning of coal waste piles from Douro Coalfield (Portugal): Petrological, geochemical and mineralogical characterization. International Journal of Coal Geology, 81(4), 359-372. DOI: 10.1016/j.coal.2009.10.005.10.1016/j.coal.2009.10.005Search in Google Scholar

Rimmer, S.M., Yoksoulian, L.E., & Hower, J.C. (2009). Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin. International Journal of Coal Geology, 79(3), 74-82. DOI: 10.1016/j.coal.2009.06.002.10.1016/j.coal.2009.06.002Search in Google Scholar

Rosiek, F., & Urbański, J. (1990). Influence of some physical properties of coal on their self-ignition. Wrocław: Scientific Publications of Mining Institute of Wrocław Technical University, 59, 27-32 (in Polish).Search in Google Scholar

Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., Alastuey, A., Zhuang, X., Lu, W., & Wang, Y. (2008). Environment characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75(2), 93-104. DOI: 10.1016/j.coal.2008.04.003.10.1016/j.coal.2008.04.003Search in Google Scholar

Quintero, J.A., Candela, S.A., Rios, C.A., Montes, C., & Uribe, C. (2009). Spontaneous combustion of the Upper Paleocene Cerrejón Formation coal and generation of clinker in La Guajira Peninsula (Carribean Region of Colombia). International Journal of Coal Geology, 80(3-4), 196-210. DOI: 10.1016/j.coal.2009.09.004.10.1016/j.coal.2009.09.004Search in Google Scholar

Sahu, H.B., Mahapatra, S.S., & Panigrahi, D.C. (2009). An empirical approach for classification of coal seams with respect to the spontaneous heating susceptibility of Indian coals. International Journal of Coal Geology, 80(3-4), 175-180. DOI: 10.1016/j.coal.2009.10.001.10.1016/j.coal.2009.10.001Search in Google Scholar

Sawicki, T. (2004). Spontaneous combustion in stock piles as the cause of fire. Karbo, 1, 56-59 (in Polish).Search in Google Scholar

Seifert, W.K., & Moldowan, J.M. (1978). Application of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42(1), 77-95. DOI: 10.1016/0016-7037(78)90219-3.10.1016/0016-7037(78)90219-3Search in Google Scholar

Seifert, W.K., & Moldowan, J.M. (1980). The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physicas and Chemistry of Earth, 12, 229-237. DOI: 10.1016/0079-1946(79)90107-1.10.1016/0079-1946(79)90107-1Search in Google Scholar

Sensogut, C., & Cinar, I. (2000). A research on the tendency of Ermenek District coals to spontaneous combustion. Mineral Resources Engineering, 9(4), 421-427. DOI: 10.1142/S0950609800000342.10.1142/S0950609800000342Search in Google Scholar

Shi, T., Wang, X., Deng, J., & Wen, Z. (2005). The mechanism at the initial stage of room-temperature oxidation of coal. Combustion and Flame, 140(4), 332-345. DOI: 10.1016/j.combustflame.2004.10.012.10.1016/j.combustflame.2004.10.012Search in Google Scholar

Simoneit, B.R.T. (1998). Biomarker PAHs in the environment. In A.H. Neilson (Ed.). PAHs and related compounds. The handbook of environmental chemistry. vol. 3 Part 1 (pp.176-221). Berlin Heidelberg: Springer-Verlag.Search in Google Scholar

Simoneit, B.R.T. (2002). Biomass burning — a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17(3), 129-162. DOI: 10.1016/S0883-2927(01)00061-0.10.1016/S0883-2927(01)00061-0Search in Google Scholar

Singh A.K., Singh R.V.K., Singh M., Chandra H., & Shukla, N.K. (2007a). Mine fire gas indices and their application to Indian underground coal mine fires. International Journal of Coal Geology, 69(3), 192-204. DOI: 10.1016/j.coal.2006.04.004.10.1016/j.coal.2006.04.004Search in Google Scholar

Singh, A.K., Singh, M.P., Sharma, M., & Srivastava, S.K. (2007b). Microstructures and mictrotextures of natural cokes: A case study of heat-affected coking coals from the Jharia coalfield, India. International Journal of Coal Geology, 71(2-3), 153-175. DOI: 10.1016/j.coal.2006.08.006.10.1016/j.coal.2006.08.006Search in Google Scholar

Singh, A.K., Sharma, M., & Singh, M.P. (2008). Genesis of natural cokes: Some Indian examples. International Journal of Coal Geology, 75(1), 40-48. DOI: 10.1016/j.coal.2008.01.002.10.1016/j.coal.2008.01.002Search in Google Scholar

Skarżyńska, K.M. (1995a): Reuse of coal mining wastes in civil engineering. Part 1: Properties of minestone. Waste Management, 15(1), 3-42. DOI: 10.1016/0956-053X(95)00004-J.10.1016/0956-053X(95)00004-JSearch in Google Scholar

Skarżyńska, K.M. (1995b). Reuse of coal mining wastes in civil engineering. Part 2: Utilization of minestone. Waste Management, 15(2), 83-126. DOI: 10.1016/0956-053X(95)00008-N.10.1016/0956-053X(95)00008-NSearch in Google Scholar

Skręt, U., Fabiańska, M.J., & Misz-Kennan, M. (2010). Simulated water-washing of organic compounds from self-heated coal wastes of the Rymer Cones Dump (Upper Silesia Coal Region, Poland). Organic Geochemistry 41(9), 1009-1012. DOI: 10.1016/j.orggeochem.2010.04.010.10.1016/j.orggeochem.2010.04.010Search in Google Scholar

Smith, M.A., & Glasser, D. (2005). Spontaneous combustion of carbonaceous stockpiles. Part II. Factors affecting the rate of the low-temperature oxidation reaction. Fuel, 84(9), 1161-1170. DOI: 10.1016/j.fuel.2004.12.005.10.1016/j.fuel.2004.12.005Search in Google Scholar

Sokol, E.V. (2005). High-temperature processes of organic fuel decomposition as a thermal source for pyrometamorphic transformations. In G.G. Lepezin (Ed.), Combustion metamorphism (pp. 22-31). Novosybirsk: Publishing House of the Siberian Branch of Russian Academy of Sciences (in Russian).Search in Google Scholar

Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D., & Teichmüller, R. (1982). Stach's Textbook of Coal Petrology. Berlin: Gebrüder Borntraeger.Search in Google Scholar

Stalker, L., Larter, S.R., & Farrimond, P. (1998). Biomarker binding into kerogens: evidence from hydrous pyrolysis using heavy water (D2O). Organic Geochemistry, 28(3-4), 239-253. DOI: 10.1016/S0146-6380(97)00103-4.10.1016/S0146-6380(97)00103-4Search in Google Scholar

Steward, A.K., Massey, M., Padgett, P.L., Rimmer, S.M., & Hower, J.C. (2005). Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield (No. 5) coal, Harrisburg, Illinois. International Journal of Coal Geology, 63(1-2), 58-67. DOI: 10.1016/j.coal.2005.02.005.10.1016/j.coal.2005.02.005Search in Google Scholar

Strachan, M.G., Alexander, R., van Bronswijk, W., & Kagi, R.I. (1989a). Source and heating rate effects upon maturity parameters based on ratios of 24-ethylcholestane diastereomers. Journal of Geochemical Exploration, 31(3), 285-294. DOI: 10.1016/0375-6742(89)90106-4.10.1016/0375-6742(89)90106-4Search in Google Scholar

Strachan, M.G., Alexander, R., Subroto, E.A., & Kagi, R.I. (1989b). Constraints upon the use of 24-ethylcholestane diastereomer ratios as indicators of the maturity of petroleum. Organic Geochemistry, 14(4), 423-432. DOI: 10.1016/0146-6380(89)90007-7.10.1016/0146-6380(89)90007-7Search in Google Scholar

Stracher, G.B. (ed.) (2007). Geology of coal fires: case studies from around the world. Reviews in Engineering Geology (pp. 283). XVIII, Colorado: The Geological Society of America, ISBN: 978-0-8137-4118-5.Search in Google Scholar

Stracher, G.B., & Taylor, T.P (2004). Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. International Journal of Coal Geology, 59(1-2), 7-17. DOI: 10.1016/j.coal.2003.03.002.10.1016/j.coal.2003.03.002Search in Google Scholar

Strumiński, A., & Rosiek, F. (1990). The evaluation of the endogenic fire-hazards in the Lower Silesian Coal Basin in the light of the tendency for the coal to self-ignite. Wrocław: Scientific Publications of Mining Institute of Wrocław Technical University, 59, 33-43 (in Polish).Search in Google Scholar

Stukalova, I.E., & Rusinova, O.V. (2007). Thermal alteration of coal in the Khasyn coalfield, Magadan region, Russia. International Journal of Coal Geology, 71(4), 462-470. DOI: 10.1016/j.coal.2006.11.005.10.1016/j.coal.2006.11.005Search in Google Scholar

Suárez-Ruiz I., & Crelling J. (2008). Applied Coal Petrology. The Role of Petrology in Coal Utilization. Amsterdam: Elsevier.Search in Google Scholar

Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G.H., & Flores, D. (2005). Classification of huminite—ICCP System 1994. International Journal of Coal Geology, 62(1-2), 85-106. DOI: 10.1016/j.coal.2004.06.006.10.1016/j.coal.2004.06.006Search in Google Scholar

Szafer, M., Urbański, H., & Tabor, A. (1994). Rules for the re-cultivation of coal waste dumps using modern techniques. Katowice: Central Mining Institute (in Polish).Search in Google Scholar

Tabor, A. (2002). Monitoring of coal waste dumps, re-cultivated dumps and other collection sites of Carboniferous waste rocks in the light of many years experience. Proceedings - VII Conference "Long term proecological undertakings in the Rybnik Coal Area", October 2002 (pp. 131-141). Rybnik, (in Polish).Search in Google Scholar

Tabor, A. (1999). Technical - ecological problems in coal waste collection [in Polish]. Proceedings - IV Conference "Conditions in the local plans for land development in towns and communes of the Rybnik Coal Area", October 1999 (pp. 195-202). Rybnik, (in Polish).Search in Google Scholar

Tabor, A. (2002-2009). Reports from the monitoring of coal waste dumps. Unpublished materials (in Polish).Search in Google Scholar

Taylor G.H., Teichmüller M., Davis A., Diessel C.F.K., Littke R., & Robert R. (1998). Organic Petrology. A New Handbook incorporating some revised parts of Stach's Textbook of Coal Petrology. Berlin: Gebrüder Borntraeger.Search in Google Scholar

Ten Haven, H.L., Littke, R., & Rullkötter, J. (1992). Hydrocarbon biological markers in Carboniferous coals of different rank. In J.M. Moldowan, P. Albrecht & R.P. Philp (Eds.). Biological markers in sediments and petroleum (pp. 142-154). New Jersey : Prentice Hall.Search in Google Scholar

The Wiley/NBS Registry of Mass Spectral Data. Wiley, New York.Search in Google Scholar

Tissot, B.P., & Welte, D.H. (1984). Petroleum Formation and Occurrence. Berlin: Springer Verlag.10.1007/978-3-642-87813-8Search in Google Scholar

Urbański J. (1983). Technical re-cultivation of mine waste dumps with particular reference to fire protection. Training Materials, Katowice: The Association of Mining Engineers and Technics (in Polish).Search in Google Scholar

Wachowicz, J. (2008). Analysis of underground fires in Polish hard coal mines. Journal of China University of Mining and Technology, 18(3), 332-336. DOI: 10.1016/S1006-1266(08)60070-X.10.1016/S1006-1266(08)60070-XSearch in Google Scholar

Wagner M. (1980). Thermal alterations of bituminous coal in fire zones of mining dumps. Scientific Papers of Academy of Mining and Metallurgy, 6(2), 5-14.Search in Google Scholar

Walker, S. (1999). Uncontrolled fires in coal and coal wastes. London: IEA Coal Research. (CCC/16). ISBN 92-9029-3247-1.Search in Google Scholar

Wang, H., Dlugogorski, B.Z., & Kennedy, E.M. (1999). Experimental study on low-temperature oxidation of an Australian coal. Energy and Fuels, 13(6), 1173-1179. DOI: 10.1021/ef990040s.10.1021/ef990040sSearch in Google Scholar

Wang, H., Dlugogorski, B.Z., & Kennedy, E.M. (2002a). Examination of CO2, CO, and H2O formation during low-temperature oxidation of a bituminous coal. Energy and Fuels, 16(3), 586-592. DOI: 10.1021/ef010152v.10.1021/ef010152vSearch in Google Scholar

Wang H., Dlugogorski B.Z., & Kennedy E.M. (2002b). Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. Fuel, 81(15), 1913-1923. DOI: 10.1016/S0016-2361(02)00122-9.10.1016/S0016-2361(02)00122-9Search in Google Scholar

Wang, H., Dlugogorski, B.Z., & Kennedy, E.M. (2003). Pathways for production of CO2 and CO in low - temperature oxidation of coal. Energy and Fuels, 17(1), 150-158. DOI: 10.1021/ef020095l.10.1021/ef020095lSearch in Google Scholar

Willey, C., Iwao, M., Castle, R.N., & Lee, M.L. (1981). Determination of sulfur heterocycles in coal liquids and shale oils. Analytical Chemistry, 53(3), 400-407. DOI: 10.1021/ac00226a006.10.1021/ac00226a006Search in Google Scholar

Willsch, H., & Radke, M. (1995). Distribution of polycyclic aromatic compounds in coals of high rank. Polycyclic Aromatic Compounds, 7(4), 231-251. DOI: 10.1080/10406639508009627.10.1080/10406639508009627Search in Google Scholar

Zhao, Y., Zhang, J., Chou, C.-L., Li, Y., Wang, Z., Ge, Y., & Zheng C. (2008). Trace element emission from spontaneous combustion of gob piles in coal mines, Shanxi, China. International Journal of Coal Geology, 73(1), 52-62. DOI: 10.1016/j.coal.2007.07.007.10.1016/j.coal.2007.07.007Search in Google Scholar

Pyle, J. M., Spear, F. S., Rudnick, R. L., & McDonough, W. F. (2001). Monazite-Xenotime-Garnet Equilibrium in Metapelites and a New Monazite-Garnet Thermometer. Journal of Petrology, 42(11), 2083-2107. DOI: 10.1093/petrology/42.11.2083.10.1093/petrology/42.11.2083Search in Google Scholar

Pettijohn, F.J. (1957). Sedimentary Rocks (2 ed.). New York: Harper & Brothers.Search in Google Scholar

eISSN:
1899-8526
ISSN:
1899-8291
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other