Open Access

The Distributional Asymptotics Mod 1 of (logb n)

   | Mar 27, 2020
Uniform distribution theory's Cover Image
Uniform distribution theory
The sixth International Conference on Uniform Distribution Theory (UDT 2018) CIRM, Luminy, Marseilles, France, October 1–5, 2018

Cite

This paper studies the distributional asymptotics of the slowly changing sequence of logarithms (logb n) with b ∈ 𝕅 \ {1}. It is known that (logbn) is not uniformly distributed modulo one, and its omega limit set is composed of a family of translated exponential distributions with constant log b. An improved upper estimate (logN/N\sqrt {\log N} /N) is obtained for the rate of convergence with respect to (w. r. t.)the Kantorovich metric on the circle, compared to the general results on rates of convergence for a class of slowly changing sequences in the author’s companion in-progress work. Moreover, a sharp rate of convergence (log N/N)w. r. t. the Kantorovich metric on the interval [0, 1], is derived. As a byproduct, the rate of convergence w.r.t. the discrepancy metric (or the Kolmogorov metric) turns out to be (log N/N) as well, which verifies that an upper bound for this rate derived in [Ohkubo, Y.—Strauch, O.: Distribution of leading digits of numbers, Unif. Distrib. Theory, 11 (2016), no.1, 23–45.] is sharp.

eISSN:
2309-5377
Language:
English