Open Access

Accessibility and Usability of Landsat 8 Data for the Purpose of Satellite-Drived Bathymetry of the South Baltic Near-Shore Waters on the Example of Gulf of Gdańsk


Cite

[1] Biuro Hydrograficzne Marynarki Wojennej, Locja Bałtyku 502, Gdynia 2008 [Sailing Directions. Balitic Pilot — available in Polish].Search in Google Scholar

[2] Chybicki A., Mapping South Baltic Near-shore bathymetry using Sentinel-2 observations, ‘Polish Maritime Research’, 2017, Vol. 24, No. 3 (95), pp. 15–25, DOI: 10.1515/pomr-2017-0086.10.1515/pomr-2017-0086Search in Google Scholar

[3] Department of the Interior U.S. Geological Survey, Landsat 8 (L8) Data Users Handbook, Version 5.0, November 2019.Search in Google Scholar

[4] Håkanson L. (ed.), Charakterystyka fizycznogeograficzna zlewiska Morza Bałtyckiego [The physical and geographical characteristics of Baltic Sea watershed], trans. A. Jankowski, G. Jankowski, ‘Środowisko Morza Bałtyckiego’, 1991, 1.Search in Google Scholar

[5] International Hydrographic Organization, Intergovernmental Oceanographic Commission, The IHO-IOC GEBCO Cook Book, IHO Publication B-11, Monaco, Sep. 2018, 416 pp – IOC Manuals and Guides 63, France, September 2018.Search in Google Scholar

[6] Leppäranta M., Myrberg K., Physical Oceanography of the Baltic Sea, 2009, Springer.10.1007/978-3-540-79703-6Search in Google Scholar

[7] Lyzenga D., Passive Remote-Sensing Techniques for Mapping Water Depth and Bottom Features, ‘Applied Optics’, 1978, Vol. 17, Issue 3, pp. 379-383, DOI: 10.1364/AO.17.000379.10.1364/AO.17.00037920174418Search in Google Scholar

[8] Lyzenga D., Malinas N., Tanis F. J., Multispectral bathymetry using a simple physically based algorithm, ‘IEEE Transactions on Geoscience and Remote Sensing’, 2006, Vol. 44, Issue 8, pp. 2251–2259, DOI: 10.1109/TGRS.2006.872909.10.1109/TGRS.2006.872909Search in Google Scholar

[9] Lyzenga D., Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and LANDSAT data, ‘International Journal of Remote Sensing’, 1981, Vol. 2, pp. 71–82, DOI: 10.1080/01431168108948342.10.1080/01431168108948342Search in Google Scholar

[10] Pe’eri S., Freire R., Klemm A., Nyberg J., Satellite-Derived Bathymetry: Performance and Production, 2016, Canadian Hydrographic Conference, May 16–19, 2016 Halifax, NS.Search in Google Scholar

[11] Pe’eri S., Madore B., Nyberg J., Snyder L., Parrish C., Smith S., Identifying Bathymetric Differences over Alaska’s North Slope using a Satellite-derived Bathymetry Multi-temporal Approach, ‘Journal of Coastal Research’, 2016, No. 76 (sp 1), pp. 56–63, DOI: 10.2112/SI76-006.10.2112/SI76-006Search in Google Scholar

[12] Pe’eri S., Parrish C., Azuike C., Alexander L., Armstrong A., Satellite Remote Sensing as Reconnaissance Tool for Assessing Nautical Chart Adequacy and Completeness, ‘Marine Geodesy’, 2014, Vol. 37, Issue 3, pp. 293-314, DOI: 10.1080/01490419.2014.902880.10.1080/01490419.2014.902880Search in Google Scholar

[13] Philpot W., Bathymetric mapping with passive multispectral imagery, ‘Applied Optics’, 1989, Vol. 28., Issue 8, pp. 1569-1578, DOI: 10.1364/AO.28.001569.10.1364/AO.28.00156920548701Search in Google Scholar

[14] Stumpf R., Holderied K., Sinclair M., Determination of water depth with high resolution satellite imagery over variable bottom types, ‘Limnology and Oceanography’, 2003, Vol. 48, pp. 547–556, DOI: 10.4319/lo.2003.48.1_part_2.0547.10.4319/lo.2003.48.1_part_2.0547Search in Google Scholar

[15] Sylvain J., Guillaume M., Minghelli-Roman A., Deville Y., Chami M., Lafrance B., Serfaty V., Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance, ‘Remote Sensing of Environment’, 2017, Vol. 200, pp. 352–367, DOI: 10.1016/j.rse.2017.08.020.10.1016/j.rse.2017.08.020Search in Google Scholar