Cite

Since that use of bioactive mineral components of dental composites have been accompanied with various toxicities, including neurotoxicity, the aim of the study was to examine the effect of chronic application of hydroxyapatite, tricalcium phosphate and amorphous calcium phosphate in nanoparticles (nHA, nTCP, nACP) to parameters of sensitivity to thermal pain stimuli. Although the systemic toxicity of those compounds is frequently attributed to an oxidative damage, we also decided to examine the potential effects of Filipendula ulmaria extract on nociception alterations induced by the nano-sized mineral components of dental composites. Forty-two Wistar albino rats were divided into control and six experimental (equal) groups that orally received either nHA, nTCP, nACP alone, or simultaneously with FU extract for 30 days. Nociceptive alterations were quantified in the hot plate and tail flick test. The chronic administration of nHA and nACP resulted in significant increase in reactivity to thermal stimulus, with no significant change observed in nTCP group when compared to the control in the hot plate test, while simultaneous application of FU extract prevented any significant alteration of time to respond. The reaction time in the tail flick test for all three groups that received only nano calcium phosphates was reduced, with no changes in the groups treated with FU extract. The results of this study confirmed that calcium phosphates of mineral components of dental composites produced hyperalgesic effects, and this side effect were significantly attenuated by antioxidant supplementation.

eISSN:
2956-2090
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other