Cite

1. Bolotov DD, Novikov AA, Bolevich S, Novikova NA, Yakovchenko AV. Influence of systemic inflammatory response to appearance of new foci of chronic inflammation. Ser J Exp Clin Res. 2020; 21 (1): 3-10.10.2478/sjecr-2020-0013Search in Google Scholar

2. Varga Z, Flammer AJ, Steiger P, Haberecker M, Ander-matt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417-18.10.1016/S0140-6736(20)30937-5Search in Google Scholar

3. Md Insiat Islam Rabby. Current Drugs with Potential for Treatment of COVID-19: A Literature Review. J Pharm Pharm Sci. 2020; 23(1): 58-64.10.18433/jpps3100232251618Search in Google Scholar

4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270-3.10.1038/s41586-020-2012-7709541832015507Search in Google Scholar

5. Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci. 2020; 5(5): 518-36.10.1016/j.jacbts.2020.04.002715139432292848Search in Google Scholar

6. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181(2): 271-80.10.1016/j.cell.2020.02.052710262732142651Search in Google Scholar

7. Muus C, et al., Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARSCoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. 2020; doi: 10.1101/2020.04.19.049254.10.1101/2020.04.19.049254Search in Google Scholar

8. Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus AD, Timens W, Turner AJ, Navis G, van Goor H. The emerging role of ACE2 in physiology and disease. J Pathol. 2007; 212(1): 1-11.10.1002/path.2162716772417464936Search in Google Scholar

9. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203: 631-7.10.1002/path.1570716772015141377Search in Google Scholar

10. Ferrario CM, Jessup J, Chappell MC et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005; 111: 2605-2610.10.1161/CIRCULATIONAHA.104.51046115897343Search in Google Scholar

11. Carly G, Ziegler K, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020. doi: 10.1016/j.cell.2020.04.035.10.1016/j.cell.2020.04.035Search in Google Scholar

12. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The Vascular Endothelium and Human Diseases. Int J Biol Sci 2013; 9(10): 1057–1069.10.7150/ijbs.7502Search in Google Scholar

13. Kade AK, Zanin SA, Gubareva EA, Turovaya AY, Bogdanova YA, Apsalyamova SO, Merzlyakova SN. Physiological functions of the vascular endothelium. Basic research. 2011; 11(3): 611-617.Search in Google Scholar

14. Chatterjee S. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Front Physiol. 2018; 9: 524.10.3389/fphys.2018.00524Search in Google Scholar

15. Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A, Peccatori J, D’Angelo A, De Cobelli F, Rovere-Querini P, Tresoldi M, Dagna L, Zangrillo A. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020; 22(2): 95-97.10.51893/2020.2.pov2Search in Google Scholar

16. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020; 55(3): 105924.10.1016/j.ijantimicag.2020.105924Search in Google Scholar

17. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. An update on the epidemio-logical characteristics of novel coronavirus pneumonia (COVID-19). Chin J Epidemiol. 2020; 41.Search in Google Scholar

18. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020 Mar 28;395(10229):1054-1062.10.1016/S0140-6736(20)30566-3Search in Google Scholar

19. Liu W, Tao Z-W, Wang L, Yuan M-L, Liu K, Zhou L, Wei S, Deng Y, Liu J, Liu H-G, Yang M, Hu Y, Analysis of factors related to the clinical outcome in hospitalized patients with a new type of coronavirus infection. Chin Med J (Engl). 2020; 133(9): 1032-1038.10.1097/CM9.0000000000000775Search in Google Scholar

20. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, Oczkowski S, Levy MM, Derde L, Dzierba A, Du B, Aboodi M, Wunsch H, Cecconi M, Koh Y, Chertow DS, Maitland K, Alshamsi F, Belley-Cote E, Greco M, Laundy M, Morgan JS, Kesecioglu J, McGeer A, Mermel L, Mammen MJ, Alexander PE, Arrington A, Centofanti JE, Citerio G, Baw B, Memish ZA, Hammond N, Hayden FG, Evans L, Rhodes A. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020; 46(5): 854-887.10.1007/s00134-020-06022-5Search in Google Scholar

21. Guidelines for the management of critically ill adults with coronavirus disease 2019 (COVID-19), Translated by V.S. Gorokhovsky, M.B. Kutsego, A.A. Naumenko, V.D. Hunter, I.R. Cherkashina, https://rosomed.ru/documents/rukovodstvo-po-vedeniu-kriticheski-bolnyhvzroslyh-s-koronavirusnoi-boleznu-2019-covid-19-vperevode-na-russkii-yazyk (date of the application 21.04.2020).Search in Google Scholar

22. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017; 39: 517–528.10.1007/s00281-017-0639-8Search in Google Scholar

23. Chakraborty RK, Burns B. Systemic Inflammatory Response Syndrome. [Updated 2020 Apr 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547669/Search in Google Scholar

24. Gusev EY, Chereshnev VA, Yurchenko LN. Systemic inflammation from the perspective of the theory of a typical pathological process. Cytokines and inflammation. 2007; 6(4): 9-21.Search in Google Scholar

25. Clapp BR, Hingorani AD, Kharbanda RK, Mohamed-Ali V, Stephens JW, Vallance P, MacAllister RJ. Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovasc Res. 2004; 64: 172-8.10.1016/j.cardiores.2004.06.020Search in Google Scholar

26. Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997; 181(3): 257-66.10.1002/(SICI)1096-9896(199703)181:3<257::AID-PATH756>3.0.CO;2-USearch in Google Scholar

27. Schalkwijk CG, Poland DCW, van Dijk W, Kok A, Emeis JJ, Drager AM, Doni A, van Hinsbergh VWM, Stehouwer CDA. Plasma concentration of c-reactive protein is increased in type i diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia. 1999; 42: 351-7.10.1007/s00125005116210096789Search in Google Scholar

28. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020; 80(6): 607-13.10.1016/j.jinf.2020.03.037719461332283152Search in Google Scholar

29. Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN. Molecular Circuits of Resolution: Formation and Actions of Resolvins and Protectins. J Immunol. 2005; 174: 4345-55.10.4049/jimmunol.174.7.434515778399Search in Google Scholar

30. Norling LV, Dalli LL, Dalli J. Resolving Inflammation by using Nutrition Therapy: Roles for Specialized Pro-Resolving Mediators. Curr Opin Clin Nutr Metab Care. 2017; 20(2): 145-152.10.1097/MCO.0000000000000353588442728002074Search in Google Scholar

31. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LAJ, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007; 21(2): 325-332.10.1096/fj.06-7227rev311963417267386Search in Google Scholar

32. Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol. 2016; 7: 16010.3389/fimmu.2016.00160Search in Google Scholar

33. Sansbury BE, Spite M. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis and Vascular Biology. Circ Res. 2016; 119(1): 113-30.10.1161/CIRCRESAHA.116.307308526082727340271Search in Google Scholar

34. Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017; 31(4): 1273-88.10.1096/fj.201601222R534979428087575Search in Google Scholar

35. Serhan CN, Yacoubian S, Yang R. Anti-Inflammatory and Pro-Resolving Lipid Mediators. Annu Rev Pathol. 2008; 3: 279-312.10.1146/annurev.pathmechdis.3.121806.151409273939618233953Search in Google Scholar

36. Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101– 137. DOI:10,1146/annurev.immunol.25.022106.141647.10.1146/annurev.immunol.25.022106.141647Search in Google Scholar

37. Molfino A, Amabile MI, Monti M, Muscaritoli M. Omega-3 Polyunsaturated Fatty Acids in Critical Illness: Anti-Inflammatory, Proresolving, or Both? Oxid Med Cell Longev. 2017; 2017: 5987082.10.1155/2017/5987082Search in Google Scholar

38. Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation, Eur J Pharmacol. 2016; 785: 144-155.10.1016/j.ejphar.2015.11.001Search in Google Scholar

39. Papa ND, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol. 2018; 9:1383.10.3389/fimmu.2018.01383601588129967618Search in Google Scholar

40. Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem. 1997; 272(11): 6972-8.10.1074/jbc.272.11.69729054386Search in Google Scholar

41. Guilford WJ, Parkinson JF. Second-generation beta-oxidation resistant 3-oxa-lipoxin A4 analogs. Prostaglandins Leukot Essent Fatty Acids. 2005; 73(3-4): 245-50.10.1016/j.plefa.2005.05.01215985364Search in Google Scholar

42. Safety and Preliminary Efficacy of Lipoxin Analog BLXA4-ME Oral Rinse for the Treatment of Gingivitis (BLXA4), ClinicalTrials.gov Identifier: NCT02342691.Search in Google Scholar

43. Faller S, Hoetzel A. Carbon monoxide in acute lung injury. Curr Pharm Biotechnol. 2012; 13(6): 777-86.10.2174/13892011280039918522201607Search in Google Scholar

44. Shinohara M, Kibi M, Riley IR, Chiang N, Dalli J, Kraft BD, Piantadosi CA, Choi AM, Serhan CN. Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. Am J Physiol Lung Cell Mol Physiol. 2014; 307(10): L746-57.10.1152/ajplung.00166.2014423329225217660Search in Google Scholar

45. Dalli J, Kraft BD, Colas RA, Shinohara M, Fredenburgh LE, Hess DR, Chiang N, Welty-Wolf K, Choi AM, Piantadosi CA, Serhan CN. The Regulation of Proresolving Lipid Mediator Profiles in Baboon Pneumonia by Inhaled Carbon Monoxide. Am J Respir Cell Mol Biol. 2015; 53(3): 314-25.10.1165/rcmb.2014-0299OC456606525568926Search in Google Scholar

46. Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R, Gray M, Crescenzi E, Martin MC, Brady HJ, Savill JS, Dransfield I, Haslett C. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med. 2006; 12(9): 1056-64.10.1038/nm146816951685Search in Google Scholar

47. Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, Pavlov AM, Sukhorukov GB, Hinds CJ, Perretti M. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med. 2014; 6(1): 27-42.10.1002/emmm.201303503393649024357647Search in Google Scholar

48. Njock MS, Cheng HS, Dang LT, Nazari-Jahantigh M, Lau AC, Boudreau E, Roufaiel M, Cybulsky MI, Schober A, Fish JE. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood. 2015; 125(20): 3202-12.10.1182/blood-2014-11-611046444088825838349Search in Google Scholar

49. Wang J, Wang BJ, Yang JC, Wang MY, Chen C, Luo GX, He WF. Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures. Zhonghua Shao Shang Za Zhi. 2020; 36(8): 691-7.Search in Google Scholar

50. Zhang T, Sun LX, Feng RE. Comparison of clinical and pathological features between severe acute respiratory syndrome and coronavirus disease 2019. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43(6): 496-502.Search in Google Scholar

51. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020; 153(6): 725-33.10.1093/ajcp/aqaa062718443632275742Search in Google Scholar

52. Cho JG, Lee A, Chang W, Lee MS, Kim J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dys-function. Front Immunol. 2018; 9: 294.10.3389/fimmu.2018.00294582619729515588Search in Google Scholar

53. Uddin M, Levy BD. Resolvins: natural agonists for resolution of pulmonary inflammation. Prog Lipid Res. 2011; 50(1): 75-88.10.1016/j.plipres.2010.09.002301213920887750Search in Google Scholar

54. Al-Soudi A, Kaaij MH, Tas SW. Endothelial cells: From innocent bystanders to active participants in immune responses. Autoimmun Rev. 2017; 16(9): 951-62.10.1016/j.autrev.2017.07.00828698091Search in Google Scholar

55. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011; 34(5): 637-50.10.1016/j.immuni.2011.05.00621616434Search in Google Scholar

56. Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas MÁ, Fresno M. Modulation of endothelial function by Toll like receptors. Pharmacol Res. 2016; 108: 46-56.10.1016/j.phrs.2016.03.03827073018Search in Google Scholar

57. Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun. 2015; 21(8): 827-46.10.1177/175342591560652526403174Search in Google Scholar

58. Herzog C, Haun RS, Kaushal GP. Role of meprin metal-loproteinases in cytokine processing and inflammation. Cytokine. 2019; 114: 18-25.10.1016/j.cyto.2018.11.032641426630580156Search in Google Scholar

59. Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev. 2016; 273(1): 61-75.10.1111/imr.12443509097927558328Search in Google Scholar

60. Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation. Arterioscler Thromb Vasc Biol. 2016; 36(10): 2048-57.10.1161/ATVBAHA.116.307610503553927515379Search in Google Scholar

61. Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015; 15(11): 692-704.10.1038/nri390826471775Search in Google Scholar

62. Serhan CN. Novel Pro-Resolving Lipid Mediators in Inflammation Are Leads for Resolution Physiology, Nature. 2014; 510(7503): 92-101.10.1038/nature13479Search in Google Scholar

63. Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin Immunol. 2015; 27(3): 200-15. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR.10.1016/j.smim.2015.03.004451537125857211Search in Google Scholar

64. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011; 254(2): 194-200.10.1097/SLA.0b013e318226113d21772125Search in Google Scholar

65. Neves FM, Meneses GC, Sousa NE, Menezes RR, Parahyba MC, Martins AM, Libório AB. Syndecan-1 in Acute Decompensated Heart Failure--Association With Renal Function and Mortality. Circ J. 2015; 79(7): 1511-9.10.1253/circj.CJ-14-1195Search in Google Scholar

66. Sieve I, Münster-Kühnel AK, Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol. 2018; 100: 26-33.10.1016/j.vph.2017.09.002Search in Google Scholar

67. Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018; 100: 1-19.10.1016/j.vph.2017.05.005Search in Google Scholar

68. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014; 41(5): 694-707.10.1016/j.immuni.2014.10.008Search in Google Scholar

69. Pober JS, Cotran RS. The role of endothelial cells in inflammation. Transplantation. 1990; 50(4): 537-44.10.1097/00007890-199010000-00001Search in Google Scholar

70. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007; 7(10): 803-15.10.1038/nri2171Search in Google Scholar

71. London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010; 2(23): 23ra19.10.1126/scitranslmed.3000678Search in Google Scholar

72. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020; 190: 62.10.1016/j.thromres.2020.04.014Search in Google Scholar

73. Hunt B, Retter A, McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19.Search in Google Scholar

74. Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020; 189(5): 846-847.10.1111/bjh.16727Search in Google Scholar

75. Spyropoulos AC, Ageno W, Barnathan ES. Hospital-based use of thromboprophylaxis in patients with COVID-19. Lancet. 2020; 395(10234): e75.10.1016/S0140-6736(20)30926-0Search in Google Scholar

76. Fan H, Goodwin AJ, Chang E, Zingarelli B, Borg K, Guan S, Halushka PV, Cook JA. Endothelial progenitor cells and a stromal cell-derived factor-1α analogue synergistically improve survival in sepsis. Am J Respir Crit Care Med. 2014; 189(12): 1509-19.10.1164/rccm.201312-2163OC422601524707934Search in Google Scholar

77. Halaidych OV, Freund C, van den Hil F, Salvatori DCF, Riminucci M, Mummery CL, Orlova VV. Inflammatory Responses and Barrier Function of Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Stem Cell Reports. 2018 May 8;10(5):1642-56.10.1016/j.stemcr.2018.03.012599530329657098Search in Google Scholar

78. Votrin SV, Vorobyev SI, Bolevich SB, Use of perfluorocarbon based blod substitute perftoran in correction of hypoxia dyring acute anemia in animals. Ser J Exp Clin Res. 2019; 20(3): 245-50.10.2478/sjecr-2018-0056Search in Google Scholar

79. Vorobyov SI, Moiseenko OM, Belyaev BL, Srednyakov VA, Luzganov YuV. Colloid-chemical and medico-biological characteristics of the perfluorocarbon Ftoremulsion III. Pharm Chem J. 2009; 43(5): 267-73.10.1007/s11094-009-0278-zSearch in Google Scholar

80. Vorobyov SI. Perfluorocarbon blood-replacing emulsions of the 1st and 2nd generation. Pharm Chem J. 2009; 43(4): 30-40.10.1007/s11094-009-0268-1Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other