Cite

1. Rydеn L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H, Marre M, Marx N, Mellbin L, Ostergren J, Patrono C, Seferovic P, Uva MS, Taskinen MR, Tendera M, Tuomilehto J, Valensi P, Zamorano JL. ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD - summary. Diab Vasc Dis Res. 2014;11(3):133-73.10.1177/147916411452554824800783Search in Google Scholar

2. Hoch E, Rusu V, Schreiber SL, Florez JC, Jacobs SB, Lander ES. Type 2 diabetes-associated variants disrupt function of SLC16A11, a proton-coupled monocarboxylate transporter, through two distinct mechanisms, Faseb J. 2017; 31.Search in Google Scholar

3. Cowan J. Overview of Type 2 Diabetes. Essentials of SGLT2 Inhibitors in Diabetes, Springer, 2017.10.1007/978-3-319-43296-0_1Search in Google Scholar

4. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA (1c). Diabetes Care 2003; 26:881–5.10.2337/diacare.26.3.88112610053Search in Google Scholar

5. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414:813–20.10.1038/414813a11742414Search in Google Scholar

6. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002; 106:2067–72.10.1161/01.CIR.0000034509.14906.AE12379575Search in Google Scholar

7. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295:1681–7.10.1001/jama.295.14.168116609090Search in Google Scholar

8. Omotayo EO, Gurtu S, Sulaiman SA, Wahab MSA, Sirajudeen K, Salleh MSM. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats, Int. J. Vitam. Nutr. Res. 2010; 80(1):74-82.10.1024/0300-9831/a000008Search in Google Scholar

9. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003; 17(1):24-38.10.1002/jbt.1005812616644Open DOISearch in Google Scholar

10. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009; 32:193–203.10.2337/dc08-9025260681318945920Search in Google Scholar

11. Gupta V, Kalra S. Choosing a gliptin. Indian J Endocrinol Metab. 2011; 15:298–308.10.4103/2230-8210.85583319377922029001Search in Google Scholar

12. Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab. 2011; 13:7–18.10.1111/j.1463-1326.2010.01306.x21114598Open DOISearch in Google Scholar

13. Blech S, Ludwig-Schwellinger E, Grаfe-Mody EU, Withopf B, Wagner K. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos. 2010; 38:667–78.10.1124/dmd.109.031476Search in Google Scholar

14. Marfella R, Barbieri M, Grella R, Rizzo MR, Nicoletti GF, Paolisso G. Effects of vildagliptin twice daily vs. sitagliptin once daily on 24-hour acute glucose fluctuations. J Diabetes Complications 2010; 24:79–83.10.1016/j.jdiacomp.2009.01.004Search in Google Scholar

15. Reed, M.J., Meszaros, K., Entes, L.J., Claypool, M.D., Pinkett, J.G., Gadbois, T.M., and Reaven, G.M. 2000. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism 49:1390-1394.10.1053/meta.2000.17721Search in Google Scholar

16. Brondum, E., Nilsson, H., and Aalkjaer, C. 2005. Functional abnormalities in isolated arteries from Goto-Kakizaki and streptozotocin-treated diabetic rat models. Horm. Metab. Res. 37:56-60.10.1055/s-2005-861370Search in Google Scholar

17. Auclair C, Voisin E (1985). Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press Une, Boca Raton, pp 123–32.Search in Google Scholar

18. Pick E, Keisari Y. A simple colorimetric method for the measurment of hydrogen peroxide produced by cells in culture. J Immunol Methods 1980; 38:161–70.10.1016/0022-1759(80)90340-3Open DOISearch in Google Scholar

19. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 1982; 26: 131–138.10.1016/0003-2697(82)90118-XOpen DOISearch in Google Scholar

20. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95:351–8.10.1016/0003-2697(79)90738-3Search in Google Scholar

21. Aebi H. Catalase in vitro. Methods in Enzymology. 1984; 105: 121-6.10.1016/S0076-6879(84)05016-3Search in Google Scholar

22. Beutler E. Superoxide dismutase. In: Beutler E, eds. Red Cell Metabolism. A Manual of Biochemical Methods. Philadelphia, Grune & Stratton:PA; 1984: 83-5.Search in Google Scholar

23. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood. Glutathione. J Lab Clin Med. 1963; 61: 882–8.Search in Google Scholar

24. Akash MS, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525-31.10.1002/jcb.2440222991242Search in Google Scholar

25. Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem. 2017;118(11):3577-85.10.1002/jcb.2609728460155Open DOISearch in Google Scholar

26. Flegal KM, Graubard BI, Williamson DF, Gail MH. Cause-specific excess deaths associated with under-weight, overweight, and obesity. JAMA. 2007;298(17):2028-37.10.1001/jama.298.17.2028Search in Google Scholar

27. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002;45(1):85-96.10.1007/s125-002-8248-zOpen DOISearch in Google Scholar

28. Shin CS, Moon BS, Park KS, Kim SY, Park SJ, Chung MH, Lee HK. Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care. 2001;24(4):733-7.10.2337/diacare.24.4.733Search in Google Scholar

29. Demircan N, Gurel A, Armutcu F, Unalacak M, Aktunc E, Atmaca H. The evaluation of serum cystatin C, malondialdehyde, and total antioxidant status in patients with metabolic syndrome. Med Sci Monit. 2008;14(2):CR97-101.Search in Google Scholar

30. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194-222.10.3390/biom5010194Search in Google Scholar

31. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol.2007;39(1):44-84.10.1016/j.biocel.2006.07.001Open DOISearch in Google Scholar

32. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016;24(5):547-53.10.1016/j.jsps.2015.03.013Search in Google Scholar

33. Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis. 2010;20(1):72-7.10.1016/j.numecd.2009.06.00219747805Open DOISearch in Google Scholar

34. Pеrez-Matute P, Zulet MA, Martínez JA. Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol. 2009;9(6):771-9.10.1016/j.coph.2009.08.005Open DOISearch in Google Scholar

35. Murakami K, Kondo T, Ohtsuka Y, Fujiwara Y, Shimada M, Kawakami Y. Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism. 1989;38(8):753-8.256966110.1016/0026-0495(89)90061-9Search in Google Scholar

36. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281(21):2005-12.10.1001/jama.281.21.200510359389Search in Google Scholar

37. Fisman EZ, Motro M, Tenenbaum A. Non-insulin anti-diabetic therapy in cardiac patients: current problems and future prospects. Adv Cardiol. 2008; 45:154-170.10.1159/00011519318230961Search in Google Scholar

38. Kottenberg E, Thielmann M, Kleinbongard P, Frey UH, Heine T, Jakob H, Heusch G, Peters J. Myocardial protection by remote ischaemic pre-conditioning is abolished in sulphonylurea-treated diabetics undergoing coronary revascularisation. Acta Anaesthesiol Scand. 2014;58(4):453-62.10.1111/aas.1227824548338Search in Google Scholar

39. Green BD, Flatt PR, Bailey CJ. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diabetes and vascular disease research. 2006; 3(3): 159-65.10.3132/dvdr.2006.02417160910Search in Google Scholar

40. Tatosian DA, Guo Y, Schaeffer AK, Gaibu N, Popa S, Stoch A, Langdon RB, Kauh EA. Dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes treated with saxagliptin, sitagliptin, or vildagliptin. Diabetes Therapy. 2013; 4(2): 431-42.10.1007/s13300-013-0045-8388931724163113Search in Google Scholar

41. Sherif IO, Al-Shaalan NH. Vildagliptin Attenuates Hepatic Ischemia/Reperfusion Injury via the TLR4/NF-κB Signaling Pathway. Oxid Med Cell Longev. 2018; 2018:3509091.10.1155/2018/3509091620418230405876Search in Google Scholar

42. El-Kashef DH, Serrya MS. Sitagliptin ameliorates thioacetamide-induced acute liver injury via modulating TLR4/NF-KB signaling pathway in mice. Life Sci. 2019; 228:266-273.10.1016/j.lfs.2019.05.01931077717Search in Google Scholar

43. Kelany ME, Hakami TM, Omar AH, Abdallah MA. Combination of Sitagliptin and Insulin against Type 2 Diabetes Mellitus with Neuropathy in Rats: Neuroprotection and Role of Oxidative and Inflammation Stress. Pharmacology. 2016;98(5-6):242-250.10.1159/00044804327449930Search in Google Scholar

44. Helal MG, Zaki MMAF, Said E. Nephroprotective effect of saxagliptin against gentamicin-induced nephrotoxicity, emphasis on anti-oxidant, anti-inflammatory and anti-apoptic effects. Life Sci. 2018; 208:64-71.10.1016/j.lfs.2018.07.02130012474Search in Google Scholar

45. Liu Y, Zhang Z, Chen R, Sun J, Chen H. Therapeutic effect of saxagliptin in rat models of nonalcoholic fatty liver and type 2 diabetes. Nan Fang Yi Ke Da Xue Xue Bao. 2014;34(6):862-8.24968846Search in Google Scholar

46. Refaat R, Sakr A, Salama M, El Sarha A. Combination of Vildagliptin and Pioglitazone in Experimental Type 2 Diabetes in Male Rats. Drug Dev Res. 2016;77(6):300-9.10.1002/ddr.2132427520857Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other