Open Access

Basic Principles of Antibiotics Dosing in Patients with Sepsis and Acute Kidney Damage Treated with Continuous Venovenous Hemodiafiltration


Cite

1. Singbartl K, Kellum JA. AKI in the ICU: definition, epidemiology, risk stratification, and outcomes. Kidney Int 2012; 81(9): 819-25.10.1038/ki.2011.33921975865Search in Google Scholar

2. Ostermann M, Joannidis M. Acute Kidney Injury 2016: diagnosis and diagnostics workup. Crit Care 2016; 20(1): 299-312.10.1186/s13054-016-1478-z503764027670788Search in Google Scholar

3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8): 801-10.10.1001/jama.2016.0287496857426903338Search in Google Scholar

4. Angus DC, Van der Pol T. Severe Sepsis and Septic Shock. N Engl J Med 2013; 369(9): 840-51.10.1056/NEJMra120862323984731Search in Google Scholar

5. Martensson J, Bellomo R. Sepsis-Induced Acute Kidney Injury. Crit Care Clin 2015; 31(4): 649-660.10.1016/j.ccc.2015.06.00326410135Search in Google Scholar

6. Swaminathan S, Rosner MH, Okusa MD. Emerging Therapeutic Targets of Sepsis-Associated Acute Kidney Injury. Semin Nephrol 2015; 35(1): 38-54.10.1016/j.semnephrol.2015.01.005436932025795498Search in Google Scholar

7. Rizo-Topete L, Ronco C. Critical Care Nephrology: A Multidisciplinary Approach. Blood Purif 2017; 43: 53-6.10.1159/00045301827915328Search in Google Scholar

8. Petrović D, Mijailović Ž, Popovska B, Miloradović V, Đurđević P. Sepsis and cardiorenal syndrome: etiopatho-genesis, diagnosis and treatment. Ser J Exp Clin Res 2013; 14(4): 181-7.10.5937/sjecr14-4363Search in Google Scholar

9. Hamzagić N, Nikolić T, Popovska Jovičić B, Čanović P, Jaćović S, Petrović D. Acute kidney damage: definition, classification and optimal time of hemodialysis. Ser J Exp Clin Res 2017; DOI: 10.1515/sjecr-2017-0050.10.1515/sjecr-2017-0050Search in Google Scholar

10. Fissell WH. Antimicrobial Dosing in Acute Renal Replacement Therapy. Adv Chronic Kidney Dis 2013; 20(1): 85-93.10.1053/j.ackd.2012.10.004380724923265600Search in Google Scholar

11. Shaw AR, Mueller BA. Antibiotic Dosing in Continuous Renal Replacement Therapy. Adv Chronic Kidney Dis 2017; 24(4): 219-27.10.1053/j.ackd.2017.05.00428778361Search in Google Scholar

12. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented Renal Clearance: Implications for Antibacterial Dosing in the Critically ill. Clin Pharmacokinet 2010; 49(1): 1-16.10.2165/11318140-000000000-0000020000886Search in Google Scholar

13. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care 2013; 17: R35.10.1186/cc12544405678323448570Search in Google Scholar

14. Hobbs AL, Shea KM, Roberts KM, Daley MJ. Implications of Augmented Renal Clearance on Drug Dosing Critically Ill Patients: A Focus on Antibiotics. Pharmacotherapy 2015; 35(11): 1063-75.10.1002/phar.165326598098Search in Google Scholar

15. Mahmoud SH, Shen C. Augmented Renal Clearance in Critical Illness: An Important Consideration in Drug Dosing. Pharmaceutics 2017; 9(3): 36-63.10.3390/pharmaceutics9030036Search in Google Scholar

16. KDIGO Clinical Practice Guideline for Acute Kidney Injury. AKI Dewfinition. Kidney Int Suppl 2012; 2(1): 19-36.10.1038/kisup.2011.32408959525018918Search in Google Scholar

17. Zarbock A, Gomez H, Kellum JA. Sepsis-induced AKI revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care 2014; 20(6): 588-95.10.1097/MCC.0000000000000153449565325320909Search in Google Scholar

18. Gomez H, Ince C, Backer DD, Pickkers P, Payen D, Hotchkiss J, Kellum JA. A Unified Theory of Sepsis-Induced Acute Kidney Injury: Inflammation, microcirculation dysfunction, bioenergetics and the tubular cell adaptation to injury. Shock 2014; 41(1): 3-11.10.1097/SHK.0000000000000052391894224346647Search in Google Scholar

19. Doi K. Role of kidney injury in sepsis. J Intensive Care 2016; 4: 17. DOI: 10.1186/s40560-016-0146-3.10.1186/s40560-016-0146-3480451727011788Search in Google Scholar

20. Kellum JA, Chawla LS. Cell-cycle arrest and acute kideny injury: the light and the dark side. Nephrol Dial Transplant 2016; 31(1): 16-22.10.1093/ndt/gfv130470304826044835Search in Google Scholar

21. Lameire N, Vanmassenhove, Van Biesen W, Vanholder R. The cell cycle biomarkers: promising research, but do not oversell them. Clin Kidney J 2016; 9(3): 353-8.10.1093/ckj/sfw033488692327274818Search in Google Scholar

22. Palevsky PM. Renal Replacement Therapy in Acute Kidney Injury. Adv Chronic Kidney Dis 2013; 20(1): 76-84.10.1053/j.ackd.2012.09.004353187723265599Search in Google Scholar

23. Heung M, Yessayan L. Renal Replacement Therapy in Acute Kidney Injury: Controversies and Consensus. Crit Care Clin 2017; 33(2): 365-78.10.1016/j.ccc.2016.12.00328284300Search in Google Scholar

24. Bagshaw SM, Cruz DN, Gibney RTN, Ronco C. A proposed algorithm for initiation of renal replacement therapy in adult critically ill patients. Crit Care 2009; 13(6): 317-2510.1186/cc8037281190619909493Search in Google Scholar

25. Wald R, Bagshaw SM. The Timing of Renal Replacement Therapy Initiation in Acute Kidney Injury. Semin Nephrol 2016; 36(1): 78-84.10.1016/j.semnephrol.2016.01.00927085738Search in Google Scholar

26. Shiao CC, Huang TM, Spapen HD, Honore PM, Wu VC. Optimal timing of renal replacement therapy initiation in acute kidney injury: the elephant felt by the blidmen? Crit Care 2017; 21: 146. DOI: 10.1186/s13054-017-1713-2.10.1186/s13054-017-1713-2547714728629397Search in Google Scholar

27. Bagshaw SM, Wald R. Strategies for the optimal timing to start renal replacement therapy in critically ill patients with acute kidney injury. Kidney Int 2017; 91(2): 1022-32.10.1016/j.kint.2016.09.053Search in Google Scholar

28. Murugan R, Hoste E, Mehta RL, Samoni S, Ding X, Rosner MH, Kellum JA, Ronco C on behalf of the Acute Disease Quality Initiative (ADOQI) Consensus Group. Precision Fluid Management in Continuous Renal Replacement Therapy. Blod Purif 2016; 42(3): 266-78.10.1159/00044852827562336Search in Google Scholar

29. Macedo E, Mehta RL. Continous Dialysis Therapies: Cor Curriculum 2016. Am J Kidney Dis 2016; 68(4): 645-57.10.1053/j.ajkd.2016.03.42727241853Search in Google Scholar

30. Rimmele T, Kellum JA. Clinical review: Blood purification for sepsis. Crit Care 2011; 15(1): 205. DOI: 10.1186/cc9411.10.1186/cc9411322204021371356Search in Google Scholar

31. Oda S, Aibiki M, Ikeda T, Imaizumi H, Endo S, Ochai R, Kotani J, Shime N, Nishida O, Noguchi T, Matsuda N, Hirasawa H and Sepsis Registry Committee of The Japanese Society of Intensive Care Medicine. The Japanese guidelines for the management of sepsis. J Intesive Care 2014; 2: 55. DOI: 10.1186/s40560-014-0055-2.10.1186/s40560-014-0055-2433627325705413Search in Google Scholar

32. Hattori N, Oda S. Cytokine-adsorbing hemofilter: old but new modality for septic acute kidney injury. Renal Replacement Therapy 2016; 2: 41. (DOI: 10.1186/s41100-016-0051-1.10.1186/s41100-016-0051-1Search in Google Scholar

33. Tanaka A, Inaguma D, Nakamura T, Watanabe T, Ito E, Kamegai N, et al. Effect of continuous hemodiafiltration using an AN69ST membrane in patients with sepsis. Renal Replacement Therapy 2017; 3: 12. (DOI: 10.1186/s41100-017-0093z).10.1186/s41100-017-0093-zSearch in Google Scholar

34. Baldwin I, Fealy N. Clinical Nursing for the Application of Continuous Renal Replacement Therapy in the Intensive Care Unit. Semin Dial 2009; 22(2): 189-93.10.1111/j.1525-139X.2008.00547.x19426427Search in Google Scholar

35. Bagshaw SM, Chakravarthi MR, Ricci Z, Tolwani A, Neri M, De Rosa S, Kellum JA, Ronco C, on behalf of the ADQI Consensus Group. Precision Continuous Renal Replacement Therapy and Solute Control. Blood Purif 2016; 42(3): 238-47.10.1159/00044850727562079Search in Google Scholar

36. Nolin TD, Aronoff GR, Fissel WH, Jain L, Madabushi R, Reynolds K, et al. Pharmacokinetic Assessment in Patients Receiving Continuous RRT: Perspectives from the Kidney Health Initiative. Clin J Am Soc Nephrol 2015; 10(1): 159-64.10.2215/CJN.05630614428441625189923Search in Google Scholar

37. Böhler J, Donauer J, Keller F. Pharmacokinetic principles during continuous renal replacement therapy: Drugs and dosage. Kidne Int 1999; 56(Suppl 72): 24-8.10.1046/j.1523-1755.1999.07202.xSearch in Google Scholar

38. Churchwell MD, Mueller BA. Drug Dosing During Continuous Renal Replacement Therapy. Semin Dial 2009; 22(2): 185-8.10.1111/j.1525-139X.2008.00541.x19426426Search in Google Scholar

39. Lewis SJ, Mueller BA. Antibiotics Dosing in Patients With Acute Kidney Injury: “Enough But Not Too Much”. J Intensive Care Med 2016; 31(3): 164-76.10.1177/088506661455549025326429Search in Google Scholar

40. Choi G, Gomersall CD, Tian Q, Joynt GM, Li AMMY, Lipman J. Principles of Antibacterial Dosing in Continuous Renal Replacement Therapy. Blood Purif 2010; 30(3): 195-212.10.1159/00032148820924175Search in Google Scholar

41. Bugge JF. Pharmacokinetics and drug dosing adjustment during continuous venovenous hemofiltration or hemodiafiltration in critically patients. Acta Anaesthesiol Scand 2001; 45(8): 929-34.10.1034/j.1399-6576.2001.450802.x11576041Search in Google Scholar

42. Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient-Concepts appraised by the example of antimicrobial agents. Adv Drug Del Rev 2014; 77(1): 3-11.10.1016/j.addr.2014.07.00625038549Search in Google Scholar

43. Honore PM, Jacobs R, De Waele E, Spapen HD. Applyng pharmacokinetic/pharmacodynamic principles for optimizing antimicrobial therapy during continuous renal replacement therapy. Anaestesiol Intensive Therapy 2017; 49(5): 412-8.10.5603/AIT.a2017.007129171000Search in Google Scholar

44. Taccone FS, De Backer D, Laterre PF, Spapen H, Dugernier T, Delattre I, et al. Pharmacokinetics of loading dose of amikacin in septic patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents 2011; 37(6): 531-5.10.1016/j.ijantimicag.2011.01.02621489756Search in Google Scholar

45. Roger C, Wallis SC, Muller L, Saissi G, Lipman J, Lefrant JY, Roberts JA. Influence of Renal Replacement Modalities on Amikacin Population Pharmacokinetics in Critically Ill Patients on Continuous Renal Replacement Therapy. Antimicrob Agents Chemother 2016; 60(8): 4901-9.10.1128/AAC.00828-16495815427270279Search in Google Scholar

46. De Winter S, Wauters J, Meersseman W, Verhaegen J, Wijngaerden EV, Peetermans W, et al. Higher versus standard amikacin single dose in emergency departemnt patients with severe sepsis and septic shock: a randomised controlled trial. Int J Antimicrob Agents 2018; 51(4): 562-70.10.1016/j.ijantimicag.2017.11.00929180278Search in Google Scholar

47. D′Avolio A, Pensi D, Baietto L, Pacini G, Di Perri G, De Rosa FG. Daptomycin Pharmacokinetics and Pharmaco-dynamics in Septic and Critically Ill Patients. Drugs 2016; 76(12): 1161-74.10.1007/s40265-016-0610-327412121Search in Google Scholar

48. Soraluce A, Asin-Prieto E, Rodriquet-Gascon A, Barrasa H, Mayner J, Carcelero E, et al. Population pharmacokinetics of daptomycin in critically ill patients. Int J Anti-microb Agents 2018; 52(2): 158-65.10.1016/j.ijantimicag.2018.03.00829572042Search in Google Scholar

49. Villa G, Di Maggio P, De Gaudio AR, Novelli A, Antoniotti R, Ficcadori E, Adembri C. Effects of continuous renal replacement therapy on linezolid pharmacokinetic/phamacodynamics: a systematic review. Crit Care 2016; 20(1): 374.10.1186/s13054-016-1551-7511621827863531Search in Google Scholar

50. Taubert M, Zander J, Frechen S, Scharf C, Frey L, Vogeser M, Fuhr U, Zoller M. Optimization of linezolid therapy in the critically ill: the effect of adjusted infusion regimens. J Antimicrob Chemother 2017; 72(8): 2304-10.10.1093/jac/dkx14928541510Search in Google Scholar

51. Beumier M, Roberts JA, Kabtouri H, Hites M, Cotton F, Wolf F, et al. A new regimen for continuous infusion of vancomycin during continuous renal replacement therapy. J Antimicrob Chemother 2013; 68(12): 2859-65.10.1093/jac/dkt26123800905Search in Google Scholar

52. Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin Dosing in Critically Ill Patients: Robust Methods for Improved Continuous-Infusion Regimens. Antimicrob Agents Chemother 2011; 55(6): 2704-9.10.1128/AAC.01708-10310140721402850Search in Google Scholar

53. Vandecasteele SJ, Vriese ASD, Tacconelli E. The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: evidence and uncerainies. J Antimicrob Chemother 2013; 68(4): 743-48.10.1093/jac/dks49523249839Search in Google Scholar

54. Filippone EJ, Kraft WK, Farber JL. The Nephrotoxicity of Vancomycin. Clin Pharm Ther 2017; 102(3): 459-469.10.1002/cpt.726557976028474732Search in Google Scholar

55. Beumier M, Casu GS, Hites M, Seyler L, Cotton F, Vincent JL, et al. β-lactam antibiotic concentrations during continuous rena replacement therapy. Crit Care 2014; 18: R105.10.1186/cc13886407512224886826Search in Google Scholar

56. Mariat C, Venet C, Jehl F, Mwewa S, Lazarevic V, Diconne E, et al. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: pharmacokinetic evaluation and dose recommendation. Crit Care 2016; 10(1): R26.10.1186/cc3993155079616507147Search in Google Scholar

57. Isla A, Gascon AR, Maynar J, Pedraz JL. Cefepime and continuous renal replacement therapy (CRRT): In vitro pemeability of two CRRT membranes and pharmacokinetics in four critically patients. Clin Ther 2005; 27(5): 599-608.10.1016/j.clinthera.2005.05.00415978309Search in Google Scholar

58. Malone RS, Fish DN, Abraham E, Teitelbaum I. Pharmacokinetics of Cefepime during Continuous Renal Replacement Therapy in Critically Ill Patients. Antimicrob Agents Chemotherapy 2001; 45(11): 3148-55.10.1128/AAC.45.11.3148-3155.20019079611600370Search in Google Scholar

59. Roger C, Cotta MO, Muller L, Wallis SC, Lipman J, Lefrant JY, Roberts JA. Impact of renal replacement modalities on the clearance of pipracillin-tazobactam administered via continuous infusion in critically ill patients. Int J Antimicrob Agents 2017; 50(2): 227-31.10.1016/j.ijantimicag.2017.03.01828689876Search in Google Scholar

60. Asin-Prieto E, Rodriguez-Gascon A, Troconiz I, Soraluce A, Maynar J, Sanchez-Izquierdo JA, et al.Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmaco-dynamic analysis. J Antimicrob Chemother 2014; 69(1): 180-9.10.1093/jac/dkt30423908259Search in Google Scholar

61. Menna P, Salvatorelli E, Mattei A, Cappiello D, Minotti G, Carassiti M. Modified Colistin Regimen for Critically ill Patients with Acute Renal Impairment and Continuous Renal Replacement Therapy. Chemotherapy 2018; 63(1): 35-8.10.1159/00048497429334366Search in Google Scholar

62. Markou N, Fousteri M, Markantonis SL, Zidianakis B, Hroni D, Boutzouka E, Baltopoulos G. Colistin pharmacokinetics in intensive care units patients on continuous venovenous haemodiafiltration: an observational study. J Antimicrob Chemother 2012; 67(10): 2459-62.10.1093/jac/dks25722790220Search in Google Scholar

63. Fiaccadori E, Antonucci E, Morabito S, dAvolio A, Maggiore U, Regolisti G. Colistin Use in Patients With Reduced Kidney Function. Am J Kidney Dis 2016; 68(2): 196-306.10.1053/j.ajkd.2016.03.42127160031Search in Google Scholar

64. Miano TA, Lautenbach E, Wilson FP, Guo W, Borovskiy Y, Hennessy. Attributable Risk and Time Course of Colistin-Associated Acute Kidney Injury. Clin J Am Soc Nephrol 2018; 13(4): 542-50.10.2215/CJN.06980717596945729545383Search in Google Scholar

65. Ulldemolnis M, Soy D, Liaurado-Serra M, Vaquer S, Castro P, Rodriquez AH, et al. Meropenem Population Pharmacokinetics in Critically Ill Patients with Septic Shock and Continuous Renal Replacement Therapy: Influence of Residual Diuresis on Dose Requirements. Antimicrobial Agenst Chemother 2015; 59(9): 5520-8.10.1128/AAC.00712-15453846826124172Search in Google Scholar

66. Eyler RF, Vilay AM, Nader AM, Heung M, Pleva M, Sowinski KM, et al. Pharmacokinetics of Ertapenem in Critically Ill Patients Receiving Continuous Venovenous Hemodialysis or Hemodiafiltration. Antimicrob Agents Chemother 2014; 58(3): 1320-6.10.1128/AAC.02090-12395785024323468Search in Google Scholar

67. Roberts JA, Udy AA, Bulitta JB, Stuart J, Jarrett P, Starr T, et al. Doripenem population pharmacokinetics and dosing requirements for critically ill patients receiving continuous venovenous haemodiafiltration. J Antimicrob Chemother 2014; 69(9): 2508-16.10.1093/jac/dku17724879665Search in Google Scholar

68. Malone RS, Fish DN, Abraham E, Teitelbaum I. Pharmacokinetics of Levofloxacin and Ciprofloxacin during Continuous Renal Replacement Therapy in Critically Ill Patients. Antimicrob Agents Chemother 2001; 45(10): 2949-54.10.1128/AAC.45.10.2949-2954.20019076211557500Search in Google Scholar

69. Wallis S, Mullany D, Lipman J, Rickard C. Pharmacokinetics of ciprofloxacin in ICU patients on continuous veno-venous haemodiafiltration. Int Care Med 2001; 27(4): 665-72.10.1007/s00134010085711398692Search in Google Scholar

70. Spooner AM, Deegan C, Darcy DM, Gowing CM, Donnelly MB, Corrigan OI. An evaluation of ciprofloxacin pharmacokinetics in critically ill patients undergoing continuous veno-venous haemodiafiltration. BMC Clinical Pharmacol 2011; 11(1): 11-20.10.1186/1472-6904-11-11316194221816053Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other