Cite

1. Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003; 24(3): 261–27110.1210/er.2003-000112788798Search in Google Scholar

2. Vranic A, Simovic S, Ristic P, Nikolic T, Stojic I, Srejovic I et al. The acute effects of different spironolactone doses oncardiac function in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2017; 95: 1343–135010.1139/cjpp-2017-005528746811Search in Google Scholar

3. Nguyen Dinh Cat A, Jaisser F. Extrarenal effects of aldosterone. Curr Opin Nephrol Hypertens 2012; 21: 147–15610.1097/MNH.0b013e32834fb25b22240440Search in Google Scholar

4. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 2013; 19: 1110-112010.1089/ars.2012.4641377154922530599Search in Google Scholar

5. Nguyen Dinh Cat A, Touyz RM. Cell signaling of angiotensin II on vasculartone: novel mechanisms. Curr Hypertens Rep 2011; 13: 122–12810.1007/s11906-011-0187-x21274755Search in Google Scholar

6. Kintscher U, Marx N, Martus P, Stoppelhaar M, Schimkus J, Schneider A et al. Effect ofhigh-dose valsartan on inflammatory and lipid parameters in patients with Type 2 diabetes and hypertension. Diabetes Res Clin Pract 2010; 89: 209–21510.1016/j.diabres.2010.04.01820537748Search in Google Scholar

7. Ristic P, Srejovic I, Nikolic T, Stojic I, Ristic D, Zivkovic V et al. The effects of zofenopril on cardiac function and pro-oxidative parameters in the streptozotocin-induced diabetic rat heart. Mol Cell Biochem 2017; 426: 183–19310.1007/s11010-016-2890-z27882442Search in Google Scholar

8. Holman RR, Haffner SM, McMurray JJ, Bethel MA, Holzhauer B, Hua TA et al. Effect ofnateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med 2010; 362: 1463–147610.1056/NEJMoa100112220228402Search in Google Scholar

9. Kjeldsen SE, Julius S, Mancia G, McInnes GT, Hua T, Weber MA et al. Effects of valsartan compared to amlodipine on preventing type 2 diabetes in high-risk hypertensive patients. the VALUE trial J Hypertens 2006; 24: 1405–141210.1097/01.hjh.0000234122.55895.5b16794491Search in Google Scholar

10. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH et al. Ramipril and the development of diabetes. JAMA 2001; 286: 1882–188510.1001/jama.286.15.188211597291Search in Google Scholar

11. Scheen AJ. Prevention of type 2 diabetes mellitus through inhibition of the renin-angiotensin system. Drugs 2004; 64: 2537–256510.2165/00003495-200464220-00004Search in Google Scholar

12. Weber MA, Julius S, Kjeldsen SE, Brunner HR, Ekman S, Hansson L. Blood pressure dependent and independent effects of antihypertensive treatment onclinical events in the VALUE Trial Lancet 2004; 363: 2049–2051Search in Google Scholar

13. Hollenberg NK, Parving HH, Viberti G, Remuzzi G, Ritter S, Zelenkofske S et al. Albuminuria response to very high-dose valsartan in type 2 diabetes mellitus. J Hypertens 2007; 25: 1921–192610.1097/HJH.0b013e328277596eSearch in Google Scholar

14. Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ et al. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol 2003; 285: 117–12410.1152/ajpregu.00476.2002Search in Google Scholar

15. Hornig B, Landmesser U, Kohler C, Ahlersmann D, Spiekermann S, Christoph A et al. Comparative effect of ACE inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 2001; 103: 799–80510.1161/01.CIR.103.6.799Search in Google Scholar

16. Kim HJ, Han SJ, Kim DJ, Jang HC, Lim S, Choi SH et al. Effects of valsartan andamlodipine on oxidative stress in type 2 diabetic patients with hypertension: arandomized, multicenter study. Korean J Intern Med 2017; 32: 497–50410.3904/kjim.2015.404Search in Google Scholar

17. Jung KH, Chu K, Lee ST, Kim SJ, Song EC, Kim EH et al. Blockade of AT1 receptorreduces apoptosis, inflammation, and oxidative stressin normotensive rats with intracerebral hemorrhage. J Pharmacol Exp Ther 2007; 322: 1051–105810.1124/jpet.107.120097Search in Google Scholar

18. Navalkar S, Parthasarathy S, Santanam N, Khan BV. Irbesartan, an angiotensin type 1 receptor inhibitor, regulatesmarkers of inflammation in patients with premature atherosclerosis. J Am Coll Cardiol 2001; 37: 440– 44410.1016/S0735-1097(00)01138-4Search in Google Scholar

19. Shmiedr R, Hilgers KF, Schlaich MP, Shmidt BMW. Renin-angiotensin system and cardiovascular risk, Lancet 2007; 369(9568): 1208–1219Search in Google Scholar

20. Yang ZH, Peng XD. Effects of valsartan on diabetic cardiomyopathy in rats with type 2 diabetes mellitus. Chin Med J 2010; 123: 3640–3643Search in Google Scholar

21. Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology 2007; 12: 261–26610.1111/j.1440-1797.2007.00796.xSearch in Google Scholar

22. Auclair C, Voisin E. Nitroblue tetrazolium reduction. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. Boca Raton CRC Press, 1985: 123–132Search in Google Scholar

23. Green LC, Wagnwr DA, Glogowski J, Skipper PL, Wish-nok JS, Tannenbaum SR. Analysis of nitrate, nitrite and (15 N) nitrate in biological fluids. Anal Biochem 1985; 126: 131–13810.1016/0003-2697(82)90118-XSearch in Google Scholar

24. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 1980; 38: 161–17010.1016/0022-1759(80)90340-3Search in Google Scholar

25. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–35810.1016/0003-2697(79)90738-3Search in Google Scholar

26. Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR et al. Challenges and issues with streptozotocin-induced diabetes—A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 2016; 244: 49–6310.1016/j.cbi.2015.11.032Search in Google Scholar

27. Chan P, Wong KL, Liu IM, Tzeng TF, Yang TL et al. Antihyperglycemic action of angiotensin II receptor antagonist, valsartan, in streptozotocin-induced diabetic rats. J Hypertens 2003; 21; 761–76910.1097/00004872-200304000-00020Search in Google Scholar

28. Criscione L, De Gasparo M, Buhlmayer P, Whitebread S, Ramjoue HP, Wood J. Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT1–receptor subtype. Br J Pharmacol 1993; 110: 7617–767110.1111/j.1476-5381.1993.tb13877.xSearch in Google Scholar

29. Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet 2004; 363: 2022–203110.1016/S0140-6736(04)16451-9Search in Google Scholar

30. Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 2003; 362: 759–76610.1016/S0140-6736(03)14282-1Search in Google Scholar

31. Ward ML, Crossman DJ. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J Cardiol 2014; 6: 577–58410.4330/wjc.v6.i7.577411060625068018Search in Google Scholar

32. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 1983; 244: E528–E53510.1152/ajpendo.1983.244.6.E5286134470Search in Google Scholar

33. Seeger H, Lippert C, Wallwiener D, Mueck AO. Valsartan and candesartan can inhibit deteriorating effects of angiotensin II on coronary endothelial function. J Renin Angiotensin Aldosterone Syst 2001; 2: 141–14310.3317/jraas.2001.01611881114Search in Google Scholar

34. Khanna S, Singh GB, Khullar M. Nitric oxide synthases and diabetic cardiomyopathy. Nitric Oxide 2014; 1: 29–3410.1016/j.niox.2014.08.00425153033Search in Google Scholar

35. Janssen S, Pokreisz P, Schoonjans L, Pellens M, Vermeersch P, Tjwa M et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 2004; 94: 1256–126210.1161/01.RES.0000126497.38281.23Search in Google Scholar

36. Ichinose F, Bloch KD, Wu JC, Hataishi R, Aretz HT, Picard MH et al. Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency. Am J Physiol Heart Circ Physiol 2004; 286: H1070–H107510.1152/ajpheart.00940.2003Search in Google Scholar

37. Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT et al. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001; 104: 1286–129110.1161/hc3601.094298Search in Google Scholar

38. Nagareddy PR, Xia Z, McNeill JH, MacLeod KM. Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. Am J Physiol Heart Circ Physiol. 2005; 289: H2144–H215210.1152/ajpheart.00591.2005Search in Google Scholar

39. West MB, Ramana KV, Kaiserova K, Sirvastava SK, Bhatngar A. L-Arginin prevents metabolic effects of high glucose in diabetic mice. FEBS let. 2008; 582: 2609–261410.1016/j.febslet.2008.06.039Search in Google Scholar

40. Iglarz M, Touyz RM, Viel EC, Amiri F, Schiffrin EL. Involvement of oxidative stress in the profibrotic action of aldosterone. Interaction with the reninangiotensin system. Am J Hypertens. 2004; 17: 597–60310.1016/S0895-7061(04)00811-8Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other