Open Access

Therapeutic Potential of “Exosomes Derived Multiple Allogeneic Proteins Paracrine Signaling: Exosomes d-MAPPS” is Based on the Effects of Exosomes, Immunosuppressive and Trophic Factors


Cite

1. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev 2015;11:280-287.10.1007/s12015-014-9583-325592610Search in Google Scholar

2. Volarevic V, Ljujic B, Stojkovic P, Lukic A, Arsenijevic N, Stojkovic M. Human stem cell research and regenerative medicine-present and future. Br Med Bull 2011;99:155-168.10.1093/bmb/ldr02721669982Search in Google Scholar

3. Volarevic V, Gazdic M, Simovic Markovic B, Jovicic N, Djonov V, Arsenijevic N. Mesenchymal stem cell-derived factors: Immunomodulatory effects and therapeutic potential. Biofactors 2017;43:633-644.10.1002/biof.137428718997Open DOISearch in Google Scholar

4. Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 2010;43:255-263.10.3109/0891693090330564119845478Search in Google Scholar

5. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, Turcatel G, De Langhe SP, Driscoll B, Bellusci S, Minoo P, Atala A, De Filippo RE, Warburton D. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008;26:2902-2911.1871922610.1634/stemcells.2008-0090317410518719226Search in Google Scholar

6. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, Furth ME, Bishop CE. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One 2011;6:e26535.10.1371/journal.pone.0026535320254322046303Search in Google Scholar

7. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006; 24:1054-1064.10.1634/stemcells.2005-037016322639Open DOISearch in Google Scholar

8. Yan ZJ, Hu YQ, Zhang HT, Zhang P, Xiao ZY, Sun XL, Cai YQ, Hu CC, Xu RX. Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow. Cell Mol Neurobiol 2013;33:465-475.2347894010.1007/s10571-013-9922-y23478940Search in Google Scholar

9. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther 2018 Aug 21. doi: 10.2174/1574888X13666180821160421.10.2174/1574888X1366618082116042130152289Open DOISearch in Google Scholar

10. Zheng YB, Gao ZL, Xie C, Zhu HP, Peng L, Chen JH, Chong YT. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: A comparative study. Cell Biol Int 2008;32:143-1448.10.1016/j.cellbi.2008.08.01518782626Search in Google Scholar

11. Wu Q, Tang J, Li Y, Li L, Wang Y, Bao J, Bu H. Hepatic differentiation of mouse bone marrow-derived mesenchymal stem cells using a novel 3D culture system. Mol Med Rep 2017;16:9473-9479.10.3892/mmr.2017.7818578000529152658Open DOISearch in Google Scholar

12. Huang K, Kang X, Wang X, Wu S, Xiao J, Li Z, Wu X, Zhang W. Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats. Mol Med Rep 2015;11:1685-1692.10.3892/mmr.2014.2981427032425411925Search in Google Scholar

13. Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, Qian W, Han X. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int 2014;38:405-411.10.1002/cbin.1024024403246Open DOISearch in Google Scholar

14. Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, Wu YL. Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon micro-environmental manipulation in vitro. Differentiation 2009;77:483-491.10.1016/j.diff.2009.01.00119505629Search in Google Scholar

15. Li YW, Zhang C, Sheng QJ, Bai H, Ding Y, Dou XG. Mesenchymal stem cells rescue acute hepatic failure by polarizing M2 macrophages. World J Gastroenterol 2017;23:7978-7988.10.3748/wjg.v23.i45.7978572529229259373Open DOISearch in Google Scholar

16. Guan XJ, Song L, Han FF, Cui ZL, Chen X, Guo XJ, Xu WG. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGFVEGF receptors. J Cell Biochem 2013;114:323-335.10.1002/jcb.2437722949406Search in Google Scholar

17. Pandey AC, Lancaster JJ, Harris DT, Goldman S, Juneman E. Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells. Stem Cells Int 2017;2017:9640108.10.1155/2017/9640108574811029391871Search in Google Scholar

18. Di Trapani M, Bassi G, Ricciardi M, Fontana E, Bifari F, Pacelli L, Giacomello L, Pozzobon M, Féron F, De Coppi P, Anversa P, Fumagalli G, Decimo I, Menard C, Tarte K, Krampera M. Comparative study of immune regulatory properties of stem cells derived from different tissues. Stem Cells Dev 2013;22:2990e3002.10.1089/scd.2013.0204384047323819720Open DOISearch in Google Scholar

19. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 2009;11:377e91.10.1080/1465324090308036719568970Search in Google Scholar

20. Tao H, Han Z, Han ZC, Li Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int 2016;2016:1314709.10.1155/2016/1314709473681626880933Search in Google Scholar

21. Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Arsenijevic N, Volarevic V. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Eye Diseases. Adv Exp Med Biol 2018 May 18. doi: 10.1007/5584_2018_219.10.1007/5584_2018_21929774506Open DOISearch in Google Scholar

22. Hyenne V, Apaydin A, Rodriguez D, Spiegelhalter C, Hoff-Yoessle S, Diem M, Tak S, Lefebvre O, Schwab Y, Goetz JG, Labouesse M. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol 2015;211:27-37.10.1083/jcb.201504136460204026459596Search in Google Scholar

23. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011;9:12.10.1186/1478-811X-9-12311782021569606Search in Google Scholar

24. Kil K, Choi MY, Kong JS, Kim WJ, Park KH. Regenerative efficacy of mesenchymal stromal cells from human placenta in sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2016;91:72-81.10.1016/j.ijporl.2016.10.01027863646Search in Google Scholar

25. Cho JS, Lee J, Jeong DU, Kim HW, Chang WS, Moon J, Chang JW. Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods. Yonsei Med J 2018;59:406-415.10.3349/ymj.2018.59.3.406588999329611403Search in Google Scholar

26. Jiang H, Zhang Y, Tian K, Wang B, Han S. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci Rep 2017;7:41837.10.1038/srep41837530125628186117Search in Google Scholar

27. Moore MC, Van De Walle A, Chang J, Juran C, McFetridge PS. Human Perinatal-Derived Biomaterials. Adv Healthc Mater 2017;6(18).10.1002/adhm.201700345573369228783879Search in Google Scholar

28. Farmer D. Placental stem cells: The promise of curing diseases before birth. Placenta 2017;59:113-115.10.1016/j.placenta.2017.04.02228477969Search in Google Scholar

29. Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta 2017;59:87-95.10.1016/j.placenta.2017.04.00328411943Search in Google Scholar

30. Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv 2016;2:e1501254.10.1126/sciadv.1501254478847826989779Search in Google Scholar

31. Xu F, Yi J, Wang Z, Hu Y, Han C, Xue Q, Zhang X, Luan X. IL-27 regulates the adherence, proliferation, and migration of MSCs and enhances their regulatory effects on Th1 and Th2 subset generations. Immunol Res 2017;65:903-912.10.1007/s12026-017-8929-8554478028612255Open DOISearch in Google Scholar

32. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005;106:419-427.10.1182/blood-2004-09-350715784733Search in Google Scholar

33. Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 1998;273:7118-71122.10.1074/jbc.273.12.71189507024Search in Google Scholar

34. Hocking AM. The Role of Chemokines in Mesenchymal Stem Cell Homing to Wounds. Adv Wound Care (New Rochelle) 2015;4:623-630.10.1089/wound.2014.0579462051826543676Search in Google Scholar

35. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by trans-differentiation into multiple skin cell type. J Immunol 2008;180:2581.10.4049/jimmunol.180.4.258118250469Search in Google Scholar

36. Xu B, Aoyama K, Kusumoto M, Matsuzawa A, Butcher EC, Michie SA, Matsuyama T, Takeuchi T. Lack of lymphoid chemokines CCL19 and CCL21 enhances allergic airway inflammation in mice. Int Immunol 2007;19:775-84.10.1093/intimm/dxm0461751387917513879Open DOISearch in Google Scholar

37. Liu J, Wei Y, Luo Q, Xu F, Zhao Z, Zhang H, Lu L, Sun J, Liu F, Du X, Li M, Wei K, Dong J. Baicalin attenuates inflammation in mice with OVA-induced asthma by inhibiting NF-κB and suppressing CCR7/CCL19/CCL21. Int J Mol Med 2016;38:1541-1548.10.3892/ijmm.2016.274327666000Open DOISearch in Google Scholar

38. Jin Y, Shen L, Chong EM, Hamrah P, Zhang Q, Chen L, Dana MR. The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis 2007;13:626-34.17515886Search in Google Scholar

39. De Pascale MR, Sommese L, Casamassimi A, Napoli C. Platelet derivatives in regenerative medicine: an update. Transfus Med Rev 2015;29:52-61.10.1016/j.tmrv.2014.11.00125544600Search in Google Scholar

40. Hayashi Y, Murakami M, Kawamura R, Ishizaka R, Fukuta O, Nakashima M. CXCL14 and MCP1 are potent trophic factors associated with cell migration and angiogenesis leading to higher regenerative potential of dental pulp side population cells. Stem Cell Res Ther 2015;6:111.10.1186/s13287-015-0088-z448805926021377Search in Google Scholar

41. Kuhn EN, Wu SM. Origin of cardiac progenitor cells in the developing and postnatal heart. J Cell Physiol20568226Search in Google Scholar

42. Chen HW, Chen HY, Wang LT, Wang FH, Fang LW, Lai HY, Chen HH, Lu J, Hung MS, Cheng Y, Chen MY, Liu SJ, Chong P, Lee OK, Hsu SC. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncogene chemokines. J Immunol 2013;190:5065-77.10.4049/jimmunol.120277523589610Search in Google Scholar

43. Okuyama H, Krishnamachary B, Zhou YF, Nagasawa H, Bosch-Marce M, Semenza GL. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxiainducible factor 1. J Biol Chem 2006;281:15554-15563.10.1074/jbc.M60200320016574650Search in Google Scholar

44. Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW, Lopez AF. The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 2009;114:1289-1298.10.1182/blood-2008-12-164004272741619436055Search in Google Scholar

45. Srivastava M, Ahlawat N, Srivastava A. Amniotic Fluid Stem Cells: A New Era in Regenerative Medicine. J Obstet Gynaecol India 2018;68:15-19.10.1007/s13224-017-1034-z578389929391670Search in Google Scholar

46. Loukogeorgakis SP, De Coppi P. Stem cells from amniotic fluid--Potential for regenerative medicine. BestSearch in Google Scholar

47. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci 2018;15:36-45.10.7150/ijms.21666576573829333086Search in Google Scholar

48. Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A, Bloch W, Jacobsen SE, Fleischmann BK. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 2007;110:1362-1369.10.1182/blood-2006-12-06341217483296Search in Google Scholar

49. Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 2004;109:3154-157.10.1161/01.CIR.0000134696.08436.6515197139Search in Google Scholar

50. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 2007; 104:11002-11007.10.1073/pnas.0704421104189181317569781Search in Google Scholar

51. Day C, Patel R, Guillen C, Wardlaw AJ. The chemokine CXCL16 is highly and constitutively expressed by human bronchial epithelial cells. Exp Lung Res 2009; 35:272-283.10.1080/01902140802635517268563919415545Open DOISearch in Google Scholar

52. Morgan AJ, Guillen C, Symon FA, Huynh TT, Berry MA, Entwisle JJ, Briskin M, Pavord ID, Wardlaw AJ. Expression of CXCR6 and its ligand CXCL16 in the lung in health and disease. Clin Exp Allergy 2005; 35:1572-1580.10.1111/j.1365-2222.2005.02383.x16393323Open DOISearch in Google Scholar

53. Huang L, Zhang L, Ju H, Li Q, Pan JS, Al-Lawati Z, Sheikh-Hamad D. Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury. Sci Rep 2015;5:18117.10.1038/srep18117467114726640170Search in Google Scholar

54. Nanki T, Shimaoka T, Hayashida K, Taniguchi K, Yonehara S, Miyasaka N. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum 2005;52:3004-3014.10.1002/art.2130116200580Open DOISearch in Google Scholar

55. Rump L, Mattey DL, Kehoe O, Middleton J. An initial investigation into endothelial CC chemokine expression in the human rheumatoid synovium. Cytokine 2017;97:133-140.10.1016/j.cyto.2017.05.023551677328648867Search in Google Scholar

56. Jin Y, Shen L, Chong EM, Hamrah P, Zhang Q, Chen L, Dana MR. The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis 2007;13:626-634.17515886Search in Google Scholar

57. Shaykhiev R, Sackrowitz R, Fukui T, Zuo WL, Chao IW, Strulovici-Barel Y, Downey RJ, Crystal RG. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer. Am J Respir Cell Mol Biol 2013;49:418-425.10.1165/rcmb.2012-0396OC382405223597004Search in Google Scholar

58. Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 2007;1117:62-72.10.1196/annals.1402.07418056038Open DOISearch in Google Scholar

59. Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 2016;91:30-38.10.1016/j.bone.2016.06.013499670127353702Search in Google Scholar

60. Clarkin CE, Gerstenfeld LC. VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 2013;31:1-11.10.1002/cbf.29112312928923129289Open DOISearch in Google Scholar

61. Huang H, Shen J, Vinores SA. Blockade of VEGFR1 and 2 suppresses pathological angiogenesis and vascular leakage in the eye. PLoS One 2011; 6:e21411.10.1371/journal.pone.0021411312088221731737Search in Google Scholar

62. Hasegawa E, Oshima Y, Takeda A, Saeki K, Yoshida H, Sonoda KH, Ishibashi T. IL-27 inhibits pathophysiological intraocular neovascularization due to laser burn. J Leukoc Biol 2012;91:267-273.10.1189/jlb.111060322045869Search in Google Scholar

63. Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, Lee YS, Egwuagu CE. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 2007;13:711-718.10.1038/nm158517496900Search in Google Scholar

64. Shi G, Field DJ, Ko KA, Ture S, Srivastava K, Levy S, Kowalska MA, Poncz M, Fowell DJ, Morrell CN. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest 2014;124:543-552.10.1172/JCI71858390462424463452Search in Google Scholar

65. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014;15:4142-4157.2460892610.3390/ijms15034142Search in Google Scholar

66. Cruz FF, Rocco PRM. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017;4:78.10.21037/sci.2017.09.02Search in Google Scholar

67. Yamada J, Dana MR, Sotozono C, Kinoshita S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res 2003;76:161-167.10.1016/S0014-4835(02)00293-2Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other