Open Access

Latent Murine Cytomegalovirus Infection Contributes to EAE Pathogenesis / Latentna Infekcija Mišjim Citomegalovirusom Ima Ulogu U Patogenezi Eksperimentalnog Autoimunskog Encefalomijelitisa


Cite

1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000; 343 (13): 938-952.10.1056/NEJM200009283431307Search in Google Scholar

2. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007; 61(4): 288-299.10.1002/ana.21117Search in Google Scholar

3. Casiraghi C, Shanina I, Cho S, Freeman ML, Blackman MA, Horwitz MS. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis. PLoS Pathog. 2012; 8(5): e1002715.10.1371/journal.ppat.1002715Search in Google Scholar

4. Angelini DF, Serafini B, Piras E, et al. Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis. PLoS Pathog. 2013; 9(4): e1003220.10.1371/journal.ppat.1003220Search in Google Scholar

5. Boeckh M, Geballe AP. Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest. 2011; 121(5): 1673-1680.10.1172/JCI45449Search in Google Scholar

6. Bentz GL, Jarquin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol. 2006; 80(23): 11539-11555.10.1128/JVI.01016-06Search in Google Scholar

7. Kondo K, Kaneshima H, Mocarski ES. Human cytomegalovirus latent infection of granulocyte-macrophage progenitors. Proc Natl Acad Sci U S A. 1994; 91(25): 11879-11883.10.1073/pnas.91.25.11879Search in Google Scholar

8. Pakpoor J, Pakpoor J, Disanto G, Giovannoni G, Ramagopalan SV. Cytomegalovirus and multiple sclerosis risk. J Neurol. 2013; 260(6):1658-1660.10.1007/s00415-013-6912-4Search in Google Scholar

9. Bernard CC. Experimental autoimmune encephalomyelitis in mice: genetic control of susceptibility. J Immunogenet. 1976; 3(4): 263-274.10.1111/j.1744-313X.1976.tb00583.xSearch in Google Scholar

10. Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc Natl Acad Sci U S A. 2002; 99(5): 3013-3017.10.1073/pnas.042684699Search in Google Scholar

11. Milovanovic M, Volarevic V, Ljujic B, et al. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. PLoS One. 2012; 7(9): e45225.10.1371/journal.pone.0045225Search in Google Scholar

12. Jiang HR, Milovanović M, Allan D, et al. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur J Immunol. 2012; 42(7): 1804-1814.10.1002/eji.201141947Search in Google Scholar

13. Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006; 1(4): 1810-1819.10.1038/nprot.2006.285Search in Google Scholar

14. Ponomarev ED, Shriver LP, Maresz K, et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol. 2007; 178(1): 39-48.10.4049/jimmunol.178.1.39Search in Google Scholar

15. Babbe H, Roers A, Waisman A, et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000; 192(3): 393-404.10.1084/jem.192.3.393Search in Google Scholar

16. Junker A, Ivanidze J, Malotka J, et al. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain. 2007; 130(Pt 11): 2789-2799.10.1093/brain/awm214Search in Google Scholar

17. Kosugi I, Kawasaki H, Arai Y, Tsutsui Y. Innate immune responses to cytomegalovirus infection in the developing mouse brain and their evasion by virus-infected neurons. Am J Pathol. 2002; 161(3): 919-928.10.1016/S0002-9440(10)64252-6Search in Google Scholar

18. van den Pol AN, Reuter JD, Santarelli JG. Enhanced cytomegalovirus infection of developing brain independent of the adaptive immune system. J Virol. 2002; 76(17): 8842-8854.10.1128/JVI.76.17.8842-8854.2002Search in Google Scholar

19. Kosmac K, Bantug GR, Pugel EP, Cekinovic D, Jonjic S, Britt WJ. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development. PLoS Pathog. 2013; 9(3): e1003200.10.1371/journal.ppat.1003200Search in Google Scholar

20. Bantug GR, Cekinovic D, Bradford R, Koontz T, Jonjic S, Britt WJ. CD8+ T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J Immunol. 2008; 181(3): 2111-2123.10.4049/jimmunol.181.3.2111Search in Google Scholar

21. Reboldi A, Coisne C, Baumjohann D, et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009; 10(5): 514-523.10.1038/ni.1716Search in Google Scholar

22. Liston A, Kohler RE, Townley S, et al. Inhibition of CCR6 function reduces the severity of experimental autoimmune encephalomyelitis via effects on the priming phase of the immune response. J Immunol. 2009; 182(5): 3121-3130.10.4049/jimmunol.0713169Search in Google Scholar

23. Hokeness KL, Deweerd ES, Munks MW, Lewis CA, Gladue RP, Salazar-Mather TP. CXCR3-dependent recruitment of antigen-specific T lymphocytes to the liver during murine cytomegalovirus infection. J Virol. 2007; 81(3): 1241-1250.10.1128/JVI.01937-06Search in Google Scholar

24. Juranic Lisnic V, Babic Cac M, Lisnic B, et al. Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface. PLoS Pathog. 2013; 9(9): e1003611.10.1371/journal.ppat.1003611Search in Google Scholar

25. Yang Y, Weiner J, Liu Y, al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J Exp Med. 2009; 206(7): 1549-1564.10.1084/jem.20082584Search in Google Scholar

26. Lalor SJ, Segal BM. Th1-mediated experimental autoimmune encephalomyelitis is CXCR3 independent. Eur J Immunol. 2013; 43(11): 2866-2874.10.1002/eji.201343499Search in Google Scholar

27. Carter SL, Muller M, Manders PM, Campbell IL. Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia. 2007; 55(16): 1728-1739.10.1002/glia.20587Search in Google Scholar

28. Huber M, Heink S, Pagenstecher A, et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest. 2013; 123(1): 247-60. 10.1172/JCI63681Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other