Open Access

The influence of the soil constitutive models on the seismic analysis of pile-supported wharf structures with batter piles in cut-slope rock dike


Cite

D. Yang, Deformation-Based Seismic Design Models for Waterfront Structures, PhD Thesis, Oregon State University, 1999.YangDDeformation-Based Seismic Design Models for Waterfront StructuresPhD ThesisOregon State University1999Search in Google Scholar

Itasca, FLAC User’s Manual for version 4.0. Itasca Consulting Group, Inc. Minneapolis: Minnesota, USA, 2000.ItascaFLAC User’s Manual for version 4.0Itasca Consulting Group, Inc. MinneapolisMinnesota, USA2000Search in Google Scholar

N. J. McCullough, The seismic geotechnical modeling, performance, and analysis of pile-supported wharves, PhD Thesis, Oregon State University, 2003.McCulloughN. J.The seismic geotechnical modeling, performance, and analysis of pile-supported wharvesPhD ThesisOregon State University2003Search in Google Scholar

L. D. Suits, T. C. Sheahan, N. J. McCullough, S. Dickenson, Centrifuge seismic modeling of pile-supported wharves. Geotechnical Testing Journal 30(5), 2007. DOI: 10.1520/GTJ14066SuitsL. D.SheahanT. C.McCulloughN. J.DickensonS.Centrifuge seismic modeling of pile-supported wharvesGeotechnical Testing Journal305200710.1520/GTJ14066Open DOISearch in Google Scholar

J. C. Boland, S. M. Schlechter, N. J. McCullough, S. E. Dickenson, B. L. Kutter, D. W. Wilson, Data Report: Pile-Supported Wharf Centrifuge Model (SMS02). Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University, 2001a.BolandJ. C.SchlechterS. M.McCulloughN. J.DickensonS. E.KutterB. L.WilsonD. W.Data Report: Pile-Supported Wharf Centrifuge Model (SMS02)Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University2001aSearch in Google Scholar

N. J. McCullough, S. M. Schlechter, S. E. Dickenson, B. L. Kutter, D. W. Wilson, Data Report: Pile-Supported Wharf Centrifuge Model (NJM01). Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University, 2000.McCulloughN. J.SchlechterS. M.DickensonS. E.KutterB. L.WilsonD. W.Data Report: Pile-Supported Wharf Centrifuge Model (NJM01)Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University2000Search in Google Scholar

S. M. Schlechter, N. J. McCullough, S.E. Dickenson, B. L. Kutter, D. W. Wilson, Data Report: Pile-Supported Wharf Centrifuge Model (NJM02). Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University, 2000a.SchlechterS. M.McCulloughN. J.DickensonS.E.KutterB. L.WilsonD. W.Data Report: Pile-Supported Wharf Centrifuge Model (NJM02)Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University2000aSearch in Google Scholar

S. M. Schlechter, N. J. McCullough, S. E. Dickenson, B. L. Kutter, D. W. Wilson, Data Report: Pile-Supported Wharf Centrifuge Model (SMS01). Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University, 2000b.SchlechterS. M.McCulloughN. J.DickensonS. E.KutterB. L.WilsonD. W.Data Report: Pile-Supported Wharf Centrifuge Model (SMS01)Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University2000bSearch in Google Scholar

N. J. McCullough, S. E. Dickenson, S. M. Schlechter, The seismic performance of piles in waterfront applications. Ports Conference 2001, Norfolk, Virginia, United States, April 29-May 2, 2001, pp. 1–10.McCulloughN. J.DickensonS. E.SchlechterS. M.The seismic performance of piles in waterfront applicationsPorts Conference 2001Norfolk, Virginia, United StatesApril 29-May 2, 200111010.1061/40555(2001)83Search in Google Scholar

J. C. Boland, S. M. Schlechter, N. J. McCullough, S.E. Dickenson, B. L. Kutter, D. W. Wilson, Data Report: Pile-Supported Wharf Centrifuge Model (JCB01). Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University, 2001b.BolandJ. C.SchlechterS. M.McCulloughN. J.DickensonS.E.KutterB. L.WilsonD. W.Data Report: Pile-Supported Wharf Centrifuge Model (JCB01)Geotechnical Engineering Group, Department of Civil, Construction and Environmental Engineering, Oregon State University2001bSearch in Google Scholar

J. I. Hwang, S. R. Kim, J. H. Kim, M. M. Kim, Seismic responses of geotechnical port and harbor structures by the shaking table test. KEERC-MAE Joint Seminar on Risk Mitigation for Regions of Moderate Seismicity, University of Illinois at Urbana-Champaign, August 5–8, 2001.HwangJ. I.KimS. R.KimJ. H.KimM. M.Seismic responses of geotechnical port and harbor structures by the shaking table testKEERC-MAE Joint Seminar on Risk Mitigation for Regions of Moderate SeismicityUniversity of Illinois at Urbana-ChampaignAugust 5–8, 2001Search in Google Scholar

S. E. Dickenson, N. J. McCullough, Modeling the Seismic Performance of Pile Supported Foundations for Port and Coastal Infrastructure. Workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE 2006, University of California, Davis, California, United States, March 16–18, 2005, pp.173–191. https://doi.org/10.1061/40822(184)15DickensonS. E.McCulloughN. J.Modeling the Seismic Performance of Pile Supported Foundations for Port and Coastal InfrastructureWorkshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE 2006University of California, Davis, California, United StatesMarch 16–18, 2005173191https://doi.org/10.1061/40822(184)1510.1061/40822(184)15Search in Google Scholar

N. M. Newmark, Effects of earthquakes on dams and embankments. Geotechnique 15. 2 (1965) 139–160.NewmarkN. M.Effects of earthquakes on dams and embankmentsGeotechnique152196513916010.1680/geot.1965.15.2.139Search in Google Scholar

J. A. Egan, R. F. Hayden, L. L. Scheibel, M. Otus, G. M. Serventi, Seismic Repair at Seventh Street Marine Terminal. In: Proceedings of the conference Grouting, Soil Improvement, and Geosynthetics, ASCE Geotechnical Special Publication, No. 30, Vol. 2, New Orleans: Louisiana, February 25–28, 1992.EganJ. A.HaydenR. F.ScheibelL. L.OtusM.ServentiG. M.Seismic Repair at Seventh Street Marine TerminalInProceedings of the conference Grouting, Soil Improvement, and Geosynthetics, ASCE Geotechnical Special Publication, No. 30, Vol. 2New Orleans: LouisianaFebruary 25–28, 1992Search in Google Scholar

J. P. Singh, M. Tabatabaie, J. B. French, Geotechnical and Ground Motion Issues in Seismic Vulnerability Assessment of Existing Wharf Structures. In: Proceedings of the ASCE Ports 2001 Conference, Norfolk, Virginia, April 29–May 2, 2001.SinghJ. P.TabatabaieM.FrenchJ. B.Geotechnical and Ground Motion Issues in Seismic Vulnerability Assessment of Existing Wharf StructuresInProceedings of the ASCE Ports 2001 ConferenceNorfolk, VirginiaApril 29–May 2, 2001Search in Google Scholar

A. Takahashi, J. Takemura, Liquefaction-induced large displacement of pile-supported wharf. Soil Dynamics and Earthquake Engineering 25 (2005) 811–825. doi:10.1016/j.soildyn.2005.04.010TakahashiATakemuraJ.Liquefaction-induced large displacement of pile-supported wharfSoil Dynamics and Earthquake Engineering25200581182510.1016/j.soildyn.2005.04.010Open DOISearch in Google Scholar

S. Dickenson, S. Yang, D. Schwarm, M. Rees, Seismic performance analysis of pile-supported wharves subjected to long-duration ground motions. Edited by Moh Huang, Proceedings of SMIP14: Seminar on Utilization of Strong-Motion Data, October 9, 2014, pp. 63–82.DickensonSYangS.SchwarmD.ReesM.Seismic performance analysis of pile-supported wharves subjected to long-duration ground motionsEdited byHuangMohProceedings of SMIP14: Seminar on Utilization of Strong-Motion DataOctober920146382Search in Google Scholar

J. C. Huertas, C. Romanel, Seismic performance of a wharf dyke. Computer Methods and Recent Advances in Geomechanics - Oka, Murakami, Uzuoka & Kimoto (Eds.), Taylor & Francis Group, London, 2015, pp. 779–784.HuertasJ. C.RomanelC.Seismic performance of a wharf dykeComputer Methods and Recent Advances in Geomechanics - OkaMurakamiUzuokaKimoto(Eds.)Taylor & Francis GroupLondon201577978410.1201/b17435-134Search in Google Scholar

S. Dickenson, S. Yang, D. Schwarm, M. Rees, Design considerations for the kinematic loading of piles. 14th Triennial International Conference, New Orleans, LA, ASCE 2016, June 12–15, 2016, pp. 1–10. https://doi.org/10.1061/9780784479902.022DickensonSYangS.SchwarmD.ReesM.Design considerations for the kinematic loading of piles14th Triennial International ConferenceNew Orleans, LAASCE 2016June 12–15, 2016110https://doi.org/10.1061/9780784479902.02210.1061/9780784479902.022Search in Google Scholar

L. Su, J. Lu, A. Elgamal, A. K. Arulmoli, Seismic performance of a pile-supported wharf: Three-dimensional finite element simulation. Soil Dynamics and Earthquake Engineering 95 (2017) 167–179. DOI: 10.1016/j.soildyn.2017.01.009SuLLuJ.ElgamalA.ArulmoliA. K.Seismic performance of a pile-supported wharf: Three-dimensional finite element simulationSoil Dynamics and Earthquake Engineering95201716717910.1016/j.soildyn.2017.01.009Open DOISearch in Google Scholar

M. Souri, A. Khosravifar, S. E. Dickenson, S. Schlechter, N. J. McCullough, Inertial and liquefaction-induced kinematic demands on a pile-supported wharf: physical modeling. © ASCE. Geotechnical Earthquake Engineering and Soil Dynamics V GSP 292, 2018, pp. 388–396. https://doi.org/10.1061/9780784481479.040SouriMKhosravifarA.DickensonS. E.SchlechterS.McCulloughN. J.Inertial and liquefaction-induced kinematic demands on a pile-supported wharf: physical modeling© ASCE. Geotechnical Earthquake Engineering and Soil Dynamics V GSP2922018388396https://doi.org/10.1061/9780784481479.04010.1061/9780784481479.040Search in Google Scholar

A. Vytiniotisa, A.-I., Panagiotidoub, A. J. Whittlec, Analysis of seismic damage mitigation for a pile-supported wharf structure. Soil Dynamics and Earthquake Engineering 119 (2019) 21–35. https://doi.org/10.1016/j.soildyn.2018.12.020VytiniotisaAPanagiotidoubA.-I.WhittlecA. J.Analysis of seismic damage mitigation for a pile-supported wharf structureSoil Dynamics and Earthquake Engineering11920192135https://doi.org/10.1016/j.soildyn.2018.12.02010.1016/j.soildyn.2018.12.020Search in Google Scholar

J. S. Chiou, C. H. Chiang , H. H. Yang, S. Y. Hsu, Developing fragility curves for a pile-supported wharf. Soil Dynamics and Earthquake Engineering 31 (2011) 830–840. doi:10.1016/j.soildyn.2011.01.011ChiouJ. S.ChiangC. H.YangH. H.HsuS. Y.Developing fragility curves for a pile-supported wharfSoil Dynamics and Earthquake Engineering31201183084010.1016/j.soildyn.2011.01.011Open DOISearch in Google Scholar

A. Gheris, A. Hamrouni, Treatment of an expansive soil using vegetable (DISS) fibre. Innovative Infrastructure Solutions, 2020, 5: 34 DOI: 10.1007/s41062-020-0281-5GherisAHamrouniA.Treatment of an expansive soil using vegetable (DISS) fibreInnovative Infrastructure Solutions202053410.1007/s41062-020-0281-5Open DOISearch in Google Scholar

R. Amirabadi, K. Bargi, H. Heidary-Torkamani, Seismic demands for pile-supported wharf. Structures with batter piles. Research Journal of Applied Sciences, Engineering and Technology 4(19) (2012) 3791–3800.AmirabadiRBargiK.Heidary-TorkamaniH.Seismic demands for pile-supported wharf. Structures with batter pilesResearch Journal of Applied Sciences, Engineering and Technology419201237913800Search in Google Scholar

R. Amirabadi, K. Bargi, M. Dolatshahi Piroz, H. Heidary-Torkamani, N. J. Mccullough, Determination of optimal probabilistic seismic demand models for pile-supported wharves. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance. Vol. 10, No. 9, (2014) 1119–1145. http://dx.doi.org/10.1080/15732479.2013.793723AmirabadiRBargiK.Dolatshahi PirozM.Heidary-TorkamaniH.McculloughN. J.Determination of optimal probabilistic seismic demand models for pile-supported wharvesStructure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance109201411191145http://dx.doi.org/10.1080/15732479.2013.79372310.1080/15732479.2013.793723Search in Google Scholar

H. Heidary-Torkamani, K. Bargi, R. Amirabadi, Fragility curves derivation for a pile-supported wharf. International Journal Of Maritime Technology. IJMT Vol.1. No. 1, Spring & Summer 2013, pp. 1–10. http://ijmt.ir/browse.php?a_code=A-10-236-1&sid=1&slc_lang=enHeidary-TorkamaniHBargiK.AmirabadiR.Fragility curves derivation for a pile-supported wharfInternational Journal Of Maritime Technology. IJMT11Spring & Summer2013110http://ijmt.ir/browse.php?a_code=A-10-236-1&sid=1&slc_lang=enSearch in Google Scholar

H. Heidary-Torkamani, K. Bargi, R. Amirabadi, N. J. McCllough, Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles. Soil Dynamics and Earthquake Engineering 61–62 (2014a) 92–106. http://dx.doi.org/10.1016/j.soildyn.2014.01.024Heidary-TorkamaniHBargiK.AmirabadiR.McClloughN. J.Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter pilesSoil Dynamics and Earthquake Engineering61–622014a92106http://dx.doi.org/10.1016/j.soildyn.2014.01.02410.1016/j.soildyn.2014.01.024Search in Google Scholar

H. Heidary-Torkamani, K. Bargi, R. Amirabadi, Seismic vulnerability assessment of pile-supported wharves using fragility curves. Structure and Infrastructure Engineering: Maintenance, Management, Life- Cycle Design and Performance. Vol. 10, No. 11, (2014b) 1417–1431. http://dx.doi.org/10.1080/15732479.2013.823453Heidary-TorkamaniHBargiK.AmirabadiR.Seismic vulnerability assessment of pile-supported wharves using fragility curvesStructure and Infrastructure Engineering: Maintenance, Management, Life- Cycle Design and Performance10112014b14171431http://dx.doi.org/10.1080/15732479.2013.82345310.1080/15732479.2013.823453Search in Google Scholar

A. Hamrouni, D. Dias, B. Sbartai, Reliability analysis of shallow tunnels using the response surface methodology. Underground Space, 2017, 2(4): 246–258.HamrouniADiasD.SbartaiB.Reliability analysis of shallow tunnels using the response surface methodologyUnderground Space20172424625810.1016/j.undsp.2017.11.003Search in Google Scholar

W.H. Roth, H. Fong, C. Rubertis, Batter piles and the seismic performance of pile-supported wharves. Proceedings of Ports’92, ASCE, Seattle, WA, 1992, pp. 336–349.RothW.H.FongH.RubertisC.Batter piles and the seismic performance of pile-supported wharvesProceedings of Ports’92ASCESeattle, WA1992336349Search in Google Scholar

S. M. Schlechter, S. E. Dickenson, N. J. McCullough, J. C. Boland, Influence of batter piles on the dynamic behavior of pile-supported wharf structures. Ports Conference 2004, ASCE 2004, pp. 1–10. DOI: 10.1061/40727(2004)12SchlechterS. M.DickensonS. E.McCulloughN. J.BolandJ. C.Influence of batter piles on the dynamic behavior of pile-supported wharf structuresPorts Conference 2004ASCE200411010.1061/40727(2004)12Open DOISearch in Google Scholar

S. A. Razavi, A. Fakher, S. R. Mirghaderi, An insight into the bad reputation of batter piles in seismic performance of wharves. 4th International Conference on Earthquake Geotechnical Engineering. Paper N° 1423, 2007, pp. 1–10.RazaviS. A.FakherA.MirghaderiS. R.An insight into the bad reputation of batter piles in seismic performance of wharves4th International Conference on Earthquake Geotechnical Engineering. Paper N° 14232007110Search in Google Scholar

J. Li, B. Song, J. Cui, Seismic dynamic damage characteristics of vertical and batter pile-supported wharf structure systems. Journal of Engineering Science and Technology Review 8 (5) (2015) 180–189. DOI: 10.25103/jestr.085.23LiJSongB.CuiJ.Seismic dynamic damage characteristics of vertical and batter pile-supported wharf structure systemsJournal of Engineering Science and Technology Review85201518018910.25103/jestr.085.23Open DOISearch in Google Scholar

J. Li, B. Song, P. Wu, Comparative study of seismic dynamic damage on vertical and batter pile-supported wharf structures. Journal of Building Structures. Vol. 37, No. 7, (2016) 151–157. DOI: 10.14006/j.jzjgxb.2016.07.019LiJSongB.WuP.Comparative study of seismic dynamic damage on vertical and batter pile-supported wharf structuresJournal of Building Structures377201615115710.14006/j.jzjgxb.2016.07.019Open DOISearch in Google Scholar

J. H. Atkinson, G. Sallfors, Experimental determination of soil properties. General Report to Session 1. Proceedings of the 10th ECSMFE, Florence 3, 1991, pp. 915–956.AtkinsonJ. H.SallforsG.Experimental determination of soil properties. General Report to Session 1Proceedings of the 10th ECSMFE, Florence 31991915956Search in Google Scholar

A. Truty, Hardening Soil Model with Small Strain Stiffness. ZACE Services, 2008.TrutyAHardening Soil Model with Small Strain StiffnessZACE Services2008Search in Google Scholar

A Hamrouni, D Dias, B Sbartai .Probability analysis of shallow circular tunnels in homogeneous soil using the surface response methodology optimized by a genetic algorithm. Tunnell Undergr Space Technol (2019) 86:22–33HamrouniADiasDSbartaiBProbability analysis of shallow circular tunnels in homogeneous soil using the surface response methodology optimized by a genetic algorithmTunnell Undergr Space Technol201986223310.1016/j.tust.2019.01.008Search in Google Scholar

T. Benz, R. Schwab, P. Vermeer, Small-strain stiffness in geotechnical analyses. Bautechnik Special issue 2009 – Geotechnical Engineering, 2009, pp.16–27. DOI: 10.1002/bate.200910038BenzTSchwabR.VermeerP.Small-strain stiffness in geotechnical analysesBautechnik Special issue 2009 – Geotechnical Engineering2009162710.1002/bate.200910038Open DOISearch in Google Scholar

R. Obrzud, The Hardening Soil model with small strain stiffness. GeoMod SA, 2011.ObrzudRThe Hardening Soil model with small strain stiffnessGeoMod SA2011Search in Google Scholar

F. Besseling, Soil-structure interaction modelling in performance based seismic jetty design, Final report. M.Sc. Graduation Project, Delft University of Technology, 2012.BesselingFSoil-structure interaction modelling in performance based seismic jetty design, Final reportM.Sc. Graduation Project, Delft University of Technology2012Search in Google Scholar

K. N. Vakili, T. Barciaga, A. A. Lavasan, T. Schanz, A practical approach to constitutive models for the analysis of geotechnical problems. The Third International Symposium On Computational Geomechanics (ComGeo III), at Krakow, Poland, Volume: 1, August 2013, pp. 738–749.VakiliK. N.BarciagaT.LavasanA. A.SchanzT.A practical approach to constitutive models for the analysis of geotechnical problemsThe Third International Symposium On Computational Geomechanics (ComGeo III)Krakow, Poland1August2013738749Search in Google Scholar

K. N. Vakili, A.A. Lavasan, M. Datcheva, T. Schanz, The influence of the soil constitutive model on the numerical assessment of mechanized tunneling. Numerical Methods in Geotechnical Engineering contains the proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2014), Delft, The Netherlands, 18–20 June 2014, pp. 889–894. DOI: 10.1201/b17017-158VakiliK. N.LavasanA.A.DatchevaM.SchanzT.The influence of the soil constitutive model on the numerical assessment of mechanized tunnelingNumerical Methods in Geotechnical Engineering contains the proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2014)Delft, The Netherlands18–20 June 201488989410.1201/b17017-158Open DOISearch in Google Scholar

M. A. Op de Kelder, 2D FEM analysis compared with the in-situ deformation measurements: A small study on the performance of the HS and HSsmall model in a design. Plaxis Bulletin, Issue 38/Autumn 2015, pp. 10–17.Op de KelderM. A.2D FEM analysis compared with the in-situ deformation measurements: A small study on the performance of the HS and HSsmall model in a designPlaxis Bulletin38Autumn20151017Search in Google Scholar

I. Alpan, The geotechnical properties of soils. Earth-Science Reviews, Vol. 6, 1970, pp. 5–49.AlpanIThe geotechnical properties of soilsEarth-Science Reviews6197054910.1016/0012-8252(70)90001-2Search in Google Scholar

T. Benz, P. A. Vermeer, Zuschrift zum Beitrag ”Uber die Korrelation der odometrischen und der ”dynamischen” Steifigkeit nichtbindiger Boden”von T. Wichtmann und Th. Triantafyllidis (Bautechnik 83, No. 7, 2006), Bautechnik, Vol. 84 (5), 2007, pp. 361–364.BenzTVermeerP. A.Zuschrift zum Beitrag ”Uber die Korrelation der odometrischen und der ”dynamischen” Steifigkeit nichtbindiger Boden”von T. Wichtmann und Th. Triantafyllidis (Bautechnik 83, No. 7, 2006)Bautechnik845200736136410.1002/bate.200790104Search in Google Scholar

T. Wichtmann, T. Triantafyllidis, On the correlation of “static” and “dynamic” stiffness moduli of non-cohesive soils. Bautechnik Special issue 2009 – Geotechnical Engineering, 2009, pp. 28–39. DOI: 10.1002/bate.200910039WichtmannTTriantafyllidisT.On the correlation of “static” and “dynamic” stiffness moduli of non-cohesive soilsBautechnik Special issue 2009 – Geotechnical Engineering2009283910.1002/bate.200910039Open DOISearch in Google Scholar

Á. Szerző, L. Batali, Numerical modelling of piled raft foundations. Modelling particularities and comparison with field measurements. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, 2017, pp. 3055–3058.SzerzőÁBataliL.Numerical modelling of piled raft foundations. Modelling particularities and comparison with field measurementsProceedings of the 19th International Conference on Soil Mechanics and Geotechnical EngineeringSeoul201730553058Search in Google Scholar

H. G. Poulos, Practical design procedures for piled raft foundations. J.A. Hemsley (ed.), Design Applications of Raft Foundations, Thomas Telford, London, 2000, pp. 425–468.PoulosH. G.Practical design procedures for piled raft foundationsHemsleyJ.A.(ed.)Design Applications of Raft FoundationsThomas Telford, London200042546810.1680/daorf.27657.0016Search in Google Scholar

M. F. Randolph, Piglet – Analysis and design of pile groups, version 5.1, July 2006.RandolphM. F.Piglet – Analysis and design of pile groups, version 5.1July2006Search in Google Scholar

A. Akbari Hamed, Predictive numerical modeling of the behavior of rockfill dams. Master’s thesis, Ecole de technologie supérieure, Montréal, 2017.Akbari HamedA.Predictive numerical modeling of the behavior of rockfill damsMaster’s thesisEcole de technologie supérieureMontréal2017Search in Google Scholar

N. Yeganeh, B. Fatahi, Effects of choice of soil constitutive model on seismic performance of moment-resisting frames experiencing foundation rocking subjected to near-field earthquakes. Soil Dynamics and Earthquake Engineering 121 (2019) 442–459. https://doi.org/10.1016/j.soildyn.2019.03.027YeganehNFatahiB.Effects of choice of soil constitutive model on seismic performance of moment-resisting frames experiencing foundation rocking subjected to near-field earthquakesSoil Dynamics and Earthquake Engineering1212019442459https://doi.org/10.1016/j.soildyn.2019.03.02710.1016/j.soildyn.2019.03.027Search in Google Scholar

PLAXIS 2D, Finite Element Code for Soil and Rock Analyses. PLAXIS BV, Delft, The Netherlands, 2010.PLAXIS 2D, Finite Element Code for Soil and Rock AnalysesPLAXIS BVDelft, The Netherlands2010Search in Google Scholar

A Hamrouni, B Sbartai, D Dias. Probabilistic analysis of ultimate seismic bearing capacity of strip foundations. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4): 717–724HamrouniASbartaiBDiasDProbabilistic analysis of ultimate seismic bearing capacity of strip foundationsJournal of Rock Mechanics and Geotechnical Engineering201810471772410.1016/j.jrmge.2018.01.009Search in Google Scholar

J. Lysmer, R. L. Kuhlmeyer, Finite Dynamic Model for Infinite Media. ASCE Journal of Engineering and Mechanical Division, 1969, pp. 859–877.LysmerJKuhlmeyerR. L.Finite Dynamic Model for Infinite MediaASCE Journal of Engineering and Mechanical Division196985987710.1061/JMCEA3.0001144Search in Google Scholar

PLAXIS 2D, Reference Manual, 2010, pp. 1–270.PLAXIS 2DReference Manual20101270Search in Google Scholar

R. L. Kuhlemeyer, J. Lysmer, Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM5, 1973, pp. 421–427.KuhlemeyerR. L.LysmerJ.Finite element method accuracy for wave propagation problemsJournal of the Soil Mechanics and Foundations Division, ASCE99SM5197342142710.1061/JSFEAQ.0001885Search in Google Scholar

O. C. Zienkiewicz, R. L. Taylor, The finite element method - Solid and fluid mechanics, Dynamics and Non-Linearity. Fourth edition, Vol. 2, McGraw-Hill Book Company Europe, London, 1991.ZienkiewiczO. C.TaylorR. L.The finite element method - Solid and fluid mechanics, Dynamics and Non-LinearityFourth edition2McGraw-Hill Book Company EuropeLondon1991Search in Google Scholar

T. J. R. Hughes, The finite element method: Linear static and dynamic finite element analysis. Prentice-Hall, INC., Englewood Cliffs, New Jersey, 1987, pp. 1–704.HughesT. J. R.The finite element method: Linear static and dynamic finite element analysisPrentice-Hall, INC.Englewood Cliffs, New Jersey19871704Search in Google Scholar

PLAXIS 2D, Scientific Manual. 2010, pp. 1–64.PLAXIS 2DScientific Manual2010164Search in Google Scholar

LUSAS, Theory Manual, FEA Ltd. United Kingdom, 2000.LUSASTheory ManualFEA Ltd.United Kingdom2000Search in Google Scholar

A Hamrouni, D Dias, B Sbartai. Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm. Geomechanics and Engineering, 2018, 15(4): 937–945HamrouniADiasDSbartaiBReliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithmGeomechanics and Engineering2018154937945Search in Google Scholar

A. Laera, R. B. J. Brinkgreve (editors), PLAXIS 2015: Site response analysis and liquefaction evaluation. The Netherlands, 2015a, pp. 1–42.LaeraABrinkgreveR. B. J.(editors)PLAXIS 2015: Site response analysis and liquefaction evaluationThe Netherlands2015a142Search in Google Scholar

A. Laera, R. B. J. Brinkgreve (editors), PLAXIS 2015: Ground response analysis in PLAXIS 2D. The Netherlands, 2015b, pp. 1–46.LaeraABrinkgreveR. B. J.(editors)PLAXIS 2015: Ground response analysis in PLAXIS 2DThe Netherlands2015b146Search in Google Scholar

K. Arulmoli, K. K. Muraleetharan, M. M. Hossain, L. S. Fruth, VELACS: Verification of liquefaction analyses by centrifuge studies laboratory testing program soil data report. Prepared for: National Science Foundation, The Earth Technology Corporation, Project No. 90-0562, Irvine, CA., 1992, pp. 1–394.ArulmoliKMuraleetharanK. K.HossainM. M.FruthL. S.VELACS: Verification of liquefaction analyses by centrifuge studies laboratory testing program soil data reportPrepared for: National Science Foundation, The Earth Technology Corporation, Project No. 90-0562Irvine, CA.19921394Search in Google Scholar

A Hamrouni, D Dias, B Sbartai (2020) Soil spatial variability impact on the behaviour of a reinforced earth wall. Front Struct Civ Eng 14, 518–531 https://doi.org/10.1007/s11709-020-0611-xHamrouniADiasDSbartaiB2020Soil spatial variability impact on the behaviour of a reinforced earth wallFront Struct Civ Eng14518531https://doi.org/10.1007/s11709-020-0611-x10.1007/s11709-020-0611-xSearch in Google Scholar

G. M. Diaz, B. W. Patton, G. L. Armstrong, M. Joolazadeh, Lateral Load Tests of Piles in Sloping Rock Fill. Proceedings of a Symposium on the Analysis and Design of Pile Foundations. ASCE National Convention, San. Francisco, California, October 1–5, 1984, pp. 214–231.DiazG. M.PattonB. W.ArmstrongG. L.JoolazadehM.Lateral Load Tests of Piles in Sloping Rock FillProceedings of a Symposium on the Analysis and Design of Pile Foundations. ASCE National ConventionSan Francisco, CaliforniaOctober 1–5, 1984214231Search in Google Scholar

G. Martin, Port of Los Angeles Seismic Code: Presentation on Geotechnical Aspects. Proceedings POLA Container Wharf Seismic Code Workshop, Los Angeles, September 13, 2005.MartinGPort of Los Angeles Seismic Code: Presentation on Geotechnical AspectsProceedings POLA Container Wharf Seismic Code WorkshopLos AngelesSeptember 13, 2005Search in Google Scholar

N. J. McCullough, S. E. Dickenson, The behavior of piles in sloping rock fill at marginal wharves. Ports Conference 2004, ASCE 2004, Houston, Texas, United States, May 23–26, 2004, pp. 1–10. https://doi.org/10.1061/40727(2004)86McCulloughN. J.DickensonS. E.The behavior of piles in sloping rock fill at marginal wharvesPorts Conference 2004, ASCE 2004Houston, Texas, United StatesMay 23–26, 2004110https://doi.org/10.1061/40727(2004)8610.1061/40727(2004)86Search in Google Scholar

Y. Kawamata, Seismic performance of pile-supported container wharf structures in rockfill. PhD diss., Oregon State University, 2009.KawamataYSeismic performance of pile-supported container wharf structures in rockfillPhD diss.Oregon State University2009Search in Google Scholar

PLAXIS 2D, Material Models Manual. 2010, pp. 1–188.PLAXIS 2DMaterial Models Manual20101188Search in Google Scholar

T. Schanz, P. A. Vermeer, P. G. Bonnier, The hardening-soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics, Balkema: Rotterdam, 1999, pp. 281–290.SchanzTVermeerP. A.BonnierP. G.The hardening-soil model: Formulation and verificationBeyond 2000 in Computational GeotechnicsBalkemaRotterdam199928129010.1201/9781315138206-27Search in Google Scholar

R. B. J. Brinkgreve, M. H. Kappert, P. G. Bonnier, Hysteretic damping in a small-strain stiffness model. Numerical Models in Geomechanics – NUMOG X – Pande & Pietruszczak (editors) © 2007 Taylor & Francis Group., London, 2007, pp. 737–742. DOI: 10.1201/NOE0415440271.ch106BrinkgreveR. B. J.KappertM. H.BonnierP. G.Hysteretic damping in a small-strain stiffness modelNumerical Models in Geomechanics – NUMOG X – Pande & Pietruszczak (editors) © 2007Taylor & Francis Group.London200773774210.1201/NOE0415440271.ch106Open DOISearch in Google Scholar

T. Benz, Small-strain stiffness of soils and its numerical consequences. PhD Thesis, Institute of Geotechnical Engineering, Universitat Stuttgart, 2007.BenzTSmall-strain stiffness of soils and its numerical consequencesPhD ThesisInstitute of Geotechnical EngineeringUniversitat Stuttgart2007Search in Google Scholar

R. L. Kondner, Hyperbolic Stress-Strain Response: Cohesive Soils. Journal of Soil Mechanics and Foundations Division. ASCE, Vol.89, No. SM1, In Proc., Paper 3429, 1963, pp. 115–143.KondnerR. L.Hyperbolic Stress-Strain Response: Cohesive SoilsJournal of Soil Mechanics and Foundations Division. ASCE89SM1In Proc., Paper 3429196311514310.1061/JSFEAQ.0000479Search in Google Scholar

R. J. Mair, Developments in geotechnical engineering research: applications to tunnels and deep excavations. Unwin Memorial Lecture 1992, Proc. Instn Civ. Engrs Civ. Engng, 3, 1993, pp. 27–41.MairR. J.Developments in geotechnical engineering research: applications to tunnels and deep excavationsUnwin Memorial Lecture 1992, Proc. Instn Civ. Engrs Civ. Engng31993274110.1680/icien.1993.22378Search in Google Scholar

J. H. Atkinson, Non-linear soil stiffness in routine design. Géotechnique 50, No. 5, 2000, pp. 487–508. https://doi.org/10.1680/geot.2000.50.5.487AtkinsonJ. H.Non-linear soil stiffness in routine designGéotechnique5052000487508https://doi.org/10.1680/geot.2000.50.5.48710.1680/geot.2000.50.5.487Search in Google Scholar

B. O. Hardin, W. L. Black, Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, ASCE, 92(SM2), 1966, pp. 27–42.HardinB. O.BlackW. L.Sand stiffness under various triaxial stressesJournal of the Soil Mechanics and Foundations Division, ASCE92SM21966274210.1061/JSFEAQ.0000865Search in Google Scholar

M. Vucetic, R. Dobry, Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering. Vol. 117, No. 1, January 1991, pp. 89–107.VuceticMDobryR.Effect of soil plasticity on cyclic responseJournal of Geotechnical Engineering1171January19918910710.1061/(ASCE)0733-9410(1991)117:1(89)Search in Google Scholar

B. O. Hardin, V. P. Drnevich, Shear modulus and damping in soils: Design equations and curves. Proc. ASCE: Journal of the Soil Mechanics and Foundations Division, 98(SM7), 1972, pp. 667–692.HardinB. O.DrnevichV. P.Shear modulus and damping in soils: Design equations and curvesProc. ASCE: Journal of the Soil Mechanics and Foundations Division98SM7197266769210.1061/JSFEAQ.0001760Search in Google Scholar

K. Ishihara, Soil Behaviour in Earthquake Geotechnics. Oxford Engineering Science Series, Oxford University Press, United States, 1996.IshiharaKSoil Behaviour in Earthquake GeotechnicsOxford Engineering Science SeriesOxford University PressUnited States1996Search in Google Scholar

A Hamrouni, D Dias, B Sbartai. Probabilistic analysis of a piled earth platform under a concrete floor slab. Soils Found. 2017, 57 (5): 828–839HamrouniADiasDSbartaiBProbabilistic analysis of a piled earth platform under a concrete floor slabSoils Found201757582883910.1016/j.sandf.2017.08.012Search in Google Scholar

W. A. Prakoso, F. H. Kulhawy, Contribution to piled raft foundation design. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 1, Paper No. 21503, 2001, pp. 17–24.PrakosoW. A.KulhawyF. H.Contribution to piled raft foundation designJournal of Geotechnical and Geoenvironmental Engineering1271Paper No. 215032001172410.1061/(ASCE)1090-0241(2001)127:1(17)Search in Google Scholar

A. Waruwu, H. C. Hardiyatmo, A. Rifa’I, Deflection behavior of the nailed slab system-supported embankment on peat soil. Journal of Applied Engineering Science 15(2017)4, 488, pp. 556–563. DOI:10.5937/jaes15-15113WaruwuAHardiyatmoH. C.Rifa’IA.Deflection behavior of the nailed slab system-supported embankment on peat soilJournal of Applied Engineering Science152017448855656310.5937/jaes15-15113Open DOISearch in Google Scholar

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics