Cite

Figure 1

Tested samples of Eemian gyttja according to the classification of Długaszek [7]: Iom = 0%–2% mineral soils.Note: 1, low organic lacustrine marl; 2, high calcareous mineral gyttja; 3, low calcareous mineral gyttja; 4, high organic lacustrine marl; 5, high calcareous mineral-organic gyttja; 6, low calcareous mineral-organic gyttja; 7, high calcareous organic gyttja; 8, low calcareous organic gyttja;  1–16, test number
Tested samples of Eemian gyttja according to the classification of Długaszek [7]: Iom = 0%–2% mineral soils.Note: 1, low organic lacustrine marl; 2, high calcareous mineral gyttja; 3, low calcareous mineral gyttja; 4, high organic lacustrine marl; 5, high calcareous mineral-organic gyttja; 6, low calcareous mineral-organic gyttja; 7, high calcareous organic gyttja; 8, low calcareous organic gyttja; 1–16, test number

Figure 2

Tested samples shown on Casagrande’s plasticity chart.Note:  1–16, test number.
Tested samples shown on Casagrande’s plasticity chart.Note: 1–16, test number.

Figure 3

Average values of the liquid limit wL depending on the test method.
Average values of the liquid limit wL depending on the test method.

Figure 4

Regression models of relationships between the liquid limits: a) wL60 = f(wLC), b) wL30 = f(wLC).Note: RE, relative error.
Regression models of relationships between the liquid limits: a) wL60 = f(wLC), b) wL30 = f(wLC).Note: RE, relative error.

Figure 5

Comparison of relationships obtained by the authors for Eemian gyttja with relationships for cohesive soils taken from the literature: a) wL60 = f(wLC), b) wL30 = f(wLC).
Comparison of relationships obtained by the authors for Eemian gyttja with relationships for cohesive soils taken from the literature: a) wL60 = f(wLC), b) wL30 = f(wLC).

Figure 6

Comparison between the measured and calculated values: a) wP and wP from Equation (30) in Table 5, b) wLC and wLC from Equation (33) in Table 5 of Eemian gyttja, with zones of maximum RE for regression models.Note: RE, relative error.
Comparison between the measured and calculated values: a) wP and wP from Equation (30) in Table 5, b) wLC and wLC from Equation (33) in Table 5 of Eemian gyttja, with zones of maximum RE for regression models.Note: RE, relative error.

Figure 7

Comparison of relationships obtained by the authors for Eemian gyttja with the relationships for Holocene gyttja obtained by Długaszek: a) wP = f(Iom), b) wLC = f(Iom).
Comparison of relationships obtained by the authors for Eemian gyttja with the relationships for Holocene gyttja obtained by Długaszek: a) wP = f(Iom), b) wLC = f(Iom).

Relationships between the Atterberg limits and the clay and organic matter contents in the literature.

Equations (no.)Soil typeReferences
LL=13.75+0.637clay + 2.937organic CR2=0.86,n=276\matrix{ {LL = 13.75 + 0.637 \cdot {\rm{clay }} + {\rm{ }}2.937 \cdot {\rm{organic\, C}}} \hfill \cr {R^2 = 0.86,\,{\rm{n}} = 276} \hfill \cr }Fine-grained soils with organic content below 6%De Jong et al. 1990 [5]
PL=10.95+0.239clay+1.156organic CR2=0.35,n=256\matrix{ {PL = 10.95 + 0.239 \cdot {\rm{clay}} + 1.156 \cdot {\rm{organic\, C}}} \hfill \cr {R^2 = 0.35,\,{\rm{n}} = 256} \hfill \cr }
PI=3.11+0.394clay+1.726organic CR2=0.55,n=259\matrix{ {PI = 3.11 + 0.394 \cdot {\rm{clay + 1}}{\rm{.726}} \cdot {\rm{organic\, C}}} \hfill \cr {R^2 = 0.55,\,{\rm{n}} = 259} \hfill \cr }
Wp=3.45+13.05Iom0.69r=0.98,n=43\matrix{ {W_p } \hfill & { = 3.45 + 13.05\,I_{{\rm{om}}}^{0.69} } \hfill \cr \,\,\,\,\, r \hfill & { = 0.98,{\rm{n}} = 43} \hfill \cr }Holocene gyttja Iom = 0.6%–73.1% CaCO3 = 2.0%–88.4%Długaszek 1991 [8]
WLC=5.96+4.08Iom1.325r=0.96,n=43\matrix{ {W_{LC} } \hfill & { = 5.96 + 4.08\,I_{{\rm{om}}}^{1.325} } \hfill \cr \,\,\,\,\,\,\,\, r \hfill & { = 0.96,\,{\rm{n}} = 43} \hfill \cr }

Single- and two-factor linear regression models of the plastic limit (wP) and liquid limit (wLC) relationship versus the organic matter content (Iom) and/or calcium carbonate content (CaCO3) relationship for Eemian gyttja.

Equations (no.)R2 (−)SEEMax. RE (%)
WP=22.12+4.70 IomW_P = 22.12 + 4.70\,I_{{\rm{om}}}0.83312.15±17
WP=20.75+1.33CacO3W_P = 20.75 + 1.33\,{\rm{CacO}}_30.78613.75±20
WP=15.79+2.96 Iom+0.59CaCO3{\bf{W}}_{\rm{P}} {\bf{ = 15}}{\bf{.79 + 2}}{\bf{.96 \, I}}_{{\rm{om}}} {\bf{ + 0}}{\bf{.59}}\,{\bf{CaCO}}_30.87410.93±16
WLC=44.25+5.12 IomW_{LC} = 44.25 + 5.12\,I_{om}0.87611.13±20
WLC=47.80+1.37CaCO3W_{LC} = 47.80 + 1.37\,{\rm{CaCO}}_{\rm{3}}0.73116.39±20
WLC=40.81+4.18 Iom+0.32CaCO3{\bf{W}}_{{\rm{LC}}} {\bf{ = 40}}{\bf{.81 + 4}}{\bf{.18 \, I}}_{{\rm{om}}} {\bf{ + 0}}{\bf{.32}}\,\,{\bf{CaCO}}_30.88711.04±15

Laboratory test results of the index properties of Eemian gyttja.

Test no.Soil typeWater content wn (%)Plastic Limit wp (%)Liquid limit wL(%)Calcium carbonate content CaCO3 (%)Organic matter content Iom (%)
Casagrande wLCCone 60° wL60Cone 30° wL30
1Gyttja (3)62.350.981.076.781.529.67.44
267.862.488.086.487.231.79.41
361.360.780.975.178.134.97.69
458.556.682.381.585.537.97.92
5Gyttja (6)74.468.0104.5101.5105.531.112.0
6Gyttja (5)102.1119.2150.4148.5163.654.717.8
798.7122.2136.1135.5137.560.918.6
898.9100.8140.0137.1143.663.818.1
9110.1116.8156.2156.8159.066.718.4
10115.6130.7152.5154.8160.170.423.3
1187.1130.9159.2166.1171.077.720.6
12100.3125.9155.2159.5162.074.020.2
1397.797.7121.3125.4130.665.420.7
14118.5110.5164.5171.6173.873.623.8
15Marl (4)90.6114.3139.1131.6140.181.018.1
1679.9110.1131.0130.8133.482.116.2

Linear and power regression models of relationships between the liquid limit wL determined by Casagrande method and fall cone methods for Eemian gyttja.

Equations (no.)R2 (−)n (−)SEEMax. RE (%)
WL60=10.39+1.08WLCW_{L60} = - 10.39 + 1.08\,W_{LC}0.989163.62±5
orWL60=3.07WLC1.08{\rm{or}}\,W_{L60} = 3.07\,W_{LC}^{1.08}
WL30=8.93+1.10WLCW_{L30} = - 8.93 + 1.10\,W_{LC}0.990163.58±7
orWL30=1.32WLC1.10{\rm{or}}\,W_{L30} = 1.32\,W_{LC}^{1.10}
WL60=1.07+0.97WL30W_{L_{60} } = 1.07 + 0.97\,W_{L30}0.990163.41±5

Relationships between the fall cone liquid limit and the Casagrande liquid limit for cohesive soils in the literature.

Equations (no.)Range of liquid limitCone typeSoil typeReferences
Linear relationships
WL60=0.95WLC+9.4W_{L60} = 0.95\,\,W_{LC} + 9.485%–200%60°–60 gDanish Eocene claysGrønbech et al. 2011 [16]
WL60=0.86WLC+3.75R2=0.99,n=63\matrix{ {W_{L60} } \hfill & { = 0.86\,\,W_{LC} + 3.75} \hfill \cr \,\,\,\,\, \,{R^2 } \hfill & { = 0.99,\,{\rm{n}} = 63} \hfill \cr }13%–117%60°–60 gFine-grained soilsMatusiewicz et al. 2016 [28]
WL60=0.772WLC+10.71r=0.993,n=33\matrix{ {W_{L60} } \hfill & { = 0.772\,\,W_{LC} + 10.71} \hfill \cr \,\, \,\,\,\,\,\, \,r \hfill & { = 0.993,\,{\rm{n}} = 33} \hfill \cr }30%–390%60°–60 gFine-grained soils, kaolin–bentonite mixturesMendoza and Orozco 2001 [29]
WL30=0.832WLC+13.28r=0.989,n=9\matrix{ {W_{L30} } \hfill & { = 0.832\,\,W_{LC} + 13.28} \hfill \cr \,\,\,\,\,\,\,\, \, r \hfill & { = 0.989,\,{\rm{n}} = 9} \hfill \cr }30%–350%30°–80 g
WL(FC)=0.95WLC0.85W_{L(FC)} = 0.95\,\,W_{LC} - 0.85<150%30°–80 g/100 g60°–60 gFine-grained soilsShimobe 2010 [36]
WL30=1.0056WLC+4.92W_{L30} = 1.0056\,\,W_{LC} + 4.9227%–110%30°–80 gTurkish natural soilsWasti 1987 [42]
WL30=0.841WLC+11.686W_{L30} = 0.841\,\,W_{LC} + 11.68680%–150%30°–80 gSoil–bentonite mixturesMishra et al. 2012 [30]
WL30=0.91WLC+3.20R2=0.99,n=63\matrix{ {W_{L30} } \hfill & { = 0.91\,\,W_{LC} + 3.20} \hfill \cr \,\,\,\,\, {R^2 } \hfill & { = 0.99,\,{\rm{n}} = 63} \hfill \cr }13%–117%30°–80 gFine-grained soilsMatusiewicz et al. 2016 [28]
Power relationships
WL30=2.56WLC0.78W_{L30} = 2.56\,\,W_{LC}^{0.78}>100%30°–80 gNatural claysSchmitz et al. 2004 [34]
WL30=1.86(WLC,BScup)0.84R2=0.98,n=216\matrix{ {W_{L30} } \hfill & { = 1.86\,\left( {W_{LC,BS\,{\rm{cup}}} } \right)^{0.84} } \hfill \cr \,\,\,\,\,\, {R^2 } \hfill & { = 0.98,\,\,{\rm {n}} = 216} \hfill \cr }Up to approx. 600%30°–80 gFine-grained soilsO’Kelly et al. 2018 [27]
WL30=1.62(WLC,BScup)0.88R2=0.96,n=199\matrix{ {W_{L30} } \hfill & { = 1.62\left( {W_{LC,BS\,{\rm{cup}}} } \right)^{0.88} } \hfill \cr \,\,\,\,\, {R^2 } \hfill & { = 0.96,\,{\rm{n}} = 199} \hfill \cr }<120%
WL30=1.90(WLC,ASTMcup)0.85R2=0.97,n=199\matrix{ {W_{L30} } \hfill & { = 1.90\left( {W_{LC,ASTM\,{\rm{cup}}} } \right)^{0.85} } \hfill \cr \,\,\,\,\, {R^2 } \hfill & { = 0.97,\,{\rm{n}} = 199} \hfill \cr }Up to approx. 600%
WL30=1.45 (WLC,ASTMcup)0.92R2=0.97,n=188\matrix{ {W_{L30} } \hfill & { = 1.45\,\,\left ( {W_{LC,ASTM\,{\rm{cup}}} } \right)^{0.92} } \hfill \cr \,\,\,\,\, {R^2 } \hfill & { = 0.97,\,{\rm{n}} = 188} \hfill \cr }<120%
eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics