Open Access

Computational Homogenization of Cement-Based Porous Piezoelectric Composites with Random Structure


Cite

[1] Rajan G., Prusty B. G. “Structural Health Monitoring of Composite Structures Using Fiber Optic methods”, CRC Press, 2017.10.1201/9781315369815Search in Google Scholar

[2] Giurgiutiu, V., Zagrai, A. N. “Embedded self-sensing piezoelectric active sensors for on-line structural identification”, Transactions-American Society of Mechanical Engineers, Journal of Vibration and Acoustics 124, pp. 116 – 125, 2002.10.1115/1.1421056Search in Google Scholar

[3] Kovac, T., Horvat, F., Hucko, B., Janco, R., Musil, M. “The effects of piezoelectricity matrix constants on the charge of a thin membrane”, Strojnícky časopis – Journal of Mechanical Engineering 67 (2), pp. 61 – 68, 2017. DOI: 10.1515/scjme-2017-001810.1515/scjme-2017-0018Open DOISearch in Google Scholar

[4] Chang, F. K. ed. “Structural health monitoring 2000”, Lancaster, PA: Technomic Publishing Co. Inc., 1999.Search in Google Scholar

[5] Lynch, J. P. “An overview of wireless structural health monitoring for civil structures”, Philosophical Transactions of the Royal Society of London A, Mathematical, Physical and Engineering Sciences 365, pp. 345 – 372, 2017. DOI: 10.1098/rsta.2006.193210.1098/rsta.2006.193217255043Open DOISearch in Google Scholar

[6] Mascarenas, D. L., Todd, M. D., Park, G., Farrar, C. R. “Development of an impedance-based wireless sensor node for structural health monitoring”, Smart Materials and Structures 16, pp. 2137 – 2145, 2017.Search in Google Scholar

[7] Bhalla S., Kiong Soh Ch. “Structural impedance based damage diagnosis by piezo-transducers”, Earthquake Engineering & Structural Dynamics 32 (12), pp. 1897 – 1916, 2003. DOI: 10.1002/eqe.30710.1002/eqe.307Open DOISearch in Google Scholar

[8] Li, Z. J., Zhang D., Wu, K. R. “Cement matrix 2-2 piezoelectric composite – part 1. Sensory effect”, Materials and Structures 34, pp. 506 – 512, 2001.10.1007/BF02486500Search in Google Scholar

[9] Dong, B., Li, Z. “Cement-based piezoelectric ceramic smart composites”, Composites Sciences and Technology 65, pp. 1363 – 1371, 2005.Search in Google Scholar

[10] Chaipanich, A. “Dielectric and piezoelectric properties of PZT–cement composites”, Current Applied Physics 7, pp. 537 – 539, 2007.10.1016/j.cap.2006.10.015Search in Google Scholar

[11] Chaipanich, A. “Effect of PZT particle size on dielectric and piezoelectric properties of PZT–cement composites”, Current Applied Physics 7, pp. 574 – 577, 200710.1016/j.cap.2006.11.036Search in Google Scholar

[12] Wu, T., Tezimer, I., Wriggers, P. “Computational thermal homogenization of concrete”, Cement & Cocnrete Composites 35, pp. 59 – 70, 2013.10.1016/j.cemconcomp.2012.08.026Search in Google Scholar

[13] Ayoso, G. M., Friswell, M. I., Adhikary, S., Khodaparast, H. H., Berger, H. “Homogenization of porous piezoelectric materials”, Int. J. of Solids and Struct. 113 – 114, pp. 218 – 229, 2017. DOI: 10.1016/j.ijsolstr.2017.03.00310.1016/j.ijsolstr.2017.03.003Open DOISearch in Google Scholar

[14] Mindlin, R. D. “Equations of high frequency vibrations of thermopiezoelasticity problems”, International Journal of Solids and Structures 10, pp. 625 – 637, 1974.10.1016/0020-7683(74)90047-XSearch in Google Scholar

[15] Stanak, P., Sladek, J., Sladek, V. “Analysis of piezoelectric semiconducting solids by meshless method”, Strojnícky časopis - Journal of Mechanical Engineering 65 (1), pp. 77 – 92, 2015. DOI: 10.1515/scjme-2016-000510.1515/scjme-2016-0005Open DOISearch in Google Scholar

[16] Li, J. Y., Dunn, M. L. “Micromechanics of magetoelectroelastic composite materials: Average Fields and Effective Behaviour”, Journal of Inteligent Materials Systems and Structures 9, pp. 404 – 416, 1998.10.1177/1045389X9800900602Search in Google Scholar

[17] Nemat-Nasser, S., Hori M. “Micromechanics: Overall properties of heterogeneous materials”, 2nd Edition Elsevier, 1998.Search in Google Scholar

[18] Bishay, P.L., Atluri, S. N. “Computational Piezo-Grains (CPGs) for a highly-efficient micromechanical modeling of heterogeneous piezoelectric - piezomagnetic composites”, European Journal of Mechanics A/Solids 53, pp. 311 – 328, 2015.10.1016/j.euromechsol.2015.05.009Search in Google Scholar

[19] Xing, F., Dong, B., Li, Z. “Dielectric, Piezoelectric, and Elastic Properties of Cement-Based Piezoelectric Ceramic Composites”, Journal of the American Ceramic Society 91, pp. 2886 – 2891, 2008.Search in Google Scholar

[20] Sladek, J., Sladek, V., Krahulec, S., Wünsche, M., Zhang, C. “MLPG analysis of layered composites with piezoelectric and piezomagnetic phases”, Computers Materials and Continua 29, pp. 75 – 101, 2012.Search in Google Scholar

[21] ANSYS Mechanical APDL Theory reference, ANSYS, Inc., 2016Search in Google Scholar

[22] ANSYS Mechanical APDL Element Reference, ANSYS, Inc., 2016Search in Google Scholar

[23] Sladek, J., Novak, P., Bishay, P. L., Sladek, V. “Effective properties of cement-based porous piezoelectric ceramic composites”, Construction and Building Materials 190, pp. 1208 – 1214, 2018. DOI: 10.1016/j.conbuildmat.2018.09.12710.1016/j.conbuildmat.2018.09.127Open DOISearch in Google Scholar

[24] Saputra, A., Sladek, V., Sladek, J., Song, Ch. “Micromechanics determination of effective material coefficient of cement-based piezoelectric ceramic composites”, Journal of Inteligent Material Systems and Structures 29, pp. 845 – 862, 2018. DOI: 10.1177/1045389X1772104710.1177/1045389X17721047Open DOISearch in Google Scholar

eISSN:
2450-5471
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics