Open Access

Detection and Modeling Vibrational Behavior of a Gas Turbine Based on Dynamic Neural Networks Approach


Cite

[1] A. Zadeh Shirazi, M. Hatami, M. Yaghoobi, S. J. S. M. Chabok. An intelligent approach to predict vibration rate in a real gas turbine. Intelligent Industrial Systems 2016 (2), No. 3, 253 - 267.10.1007/s40903-016-0057-6Search in Google Scholar

[2] A. Hafaifa, M. Guemana, A. Daoudi. Vibration supervision in gas turbine based on parity space approach to increasing efficiency. Journal of Vibration and Control 2015 (21), 1622 - 1632.10.1177/1077546313499927Search in Google Scholar

[3] S. Madhavan, J. Rajeev, C. Sujatha, A. S. Sekhar. Vibration based damage detection of rotor blades in a gas turbine engine. Engineering Failure Analysis 2014 (46), 26 - 39.10.1016/j.engfailanal.2014.07.021Search in Google Scholar

[4] F. Z. Sierra-Espinosa, J. C. García. Vibration failure in admission pipe of a steam turbine due to flow instability. Engineering Failure Analysis 2013 (27), 30 - 40.10.1016/j.engfailanal.2012.08.011Search in Google Scholar

[5] V. S. Luk'yanov, G. A. Khodakov. Mathematical model for evaluating the natural vibration frequency of gas-turbine engine disks with small change of web thickness. Strength of Materials 1987 (19), No. 3, 430 - 434.10.1007/BF01524148Search in Google Scholar

[6] S. Delvecchio, P. Bonfiglio, F. Pompoli. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques. Mechanical Systems and Signal Processing 2018 (99), 661 - 683.10.1016/j.ymssp.2017.06.033Search in Google Scholar

[7] Y. Wu, H. Zhang, L. Zuo. Thermoelectric energy harvesting for the gas turbine sensing and monitoring system. Energy Conversion and Management 2018 (157), 215 - 223.10.1016/j.enconman.2017.12.009Search in Google Scholar

[8] Z. Guo, K. Feng, T. Liu, P. Lyu, T. Zhang. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations. Mechanical Systems and Signal Processing 2018 (107), 549 - 566.10.1016/j.ymssp.2018.02.005Search in Google Scholar

[9] L. Pesaresi, L. Salles, A. Jones, J. S. Green, C. W. Schwingshackl. Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications. Mechanical Systems and Signal Processing 2017 (85), 662 - 679.10.1016/j.ymssp.2016.09.007Search in Google Scholar

[10] N. Hadroug, A. Hafaifa, K. Abdellah, A. Chaibet. Dynamic model linearization of two shafts gas turbine via their input / output data around the equilibrium points. Energy 2017 (120), 488 - 497.10.1016/j.energy.2016.11.099Search in Google Scholar

[11] M. Tahan, E. Tsoutsanis, M. Muhammad, Z.A. Abdul Karim. Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Applied Energy 2017 (198), 122 - 144.10.1016/j.apenergy.2017.04.048Search in Google Scholar

[12] M. Amozegar, K. Khorasani. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines. Neural Networks 2016 (76), 106 -121.10.1016/j.neunet.2016.01.003Search in Google Scholar

[13] B. Djaidir, A. Hafaifa, K. Abdallah. Faults detection in gas turbine rotor using vibration analysis under varying conditions. Journal of Theoretical and Applied Mechanics 2017 (55), No. 2, 393 - 406.10.15632/jtam-pl.55.2.393Search in Google Scholar

[14] R. B. Joly, S. O. T. Ogaji, R. Singh, S. D. Probert. Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine. Applied Energy 2004 (78), No. 4, 397 - 418.10.1016/j.apenergy.2003.10.002Search in Google Scholar

[15] P. Kin Wong, Z. Yang, Ch. M. Vong, J. Zhong. Real-time fault diagnosis for gas turbine generator systems using extreme learning machine. Neurocomputing 2014 (128), 249 - 257.10.1016/j.neucom.2013.03.059Search in Google Scholar

[16] S. Sina Tayarani-Bathaie, K. Khorasani. Fault detection and isolation of gas turbine engines using a bank of neural networks. Journal of Process Control 2015 (36), 22-41.10.1016/j.jprocont.2015.08.007Search in Google Scholar

[17] A. V. Kochergin, i. V. Ivshin, A. R. Sabirov, V. A. Gavrilov. Diagnostics of gas turbine engine blades using the forced vibration method. Russian Aeronautics 2007 (50), No. 3, 330 - 332.10.3103/S1068799807030178Search in Google Scholar

[18] M. Šofer, R. Fajkoš, R. Halama. Influence of Induction Hardening on Wear Resistance in Case of Rolling Contact. Journal of Mechanical Engineering - Strojnícky časopis 2016 (66), No. 1, 17 - 26.10.1515/scjme-2016-0007Search in Google Scholar

[19] A. Benyounes, A. Hafaifa, M. Guemana. Gas turbine modelling based on fuzzy clustering algorithm using experimental data. Journal of Applied Artificial Intelligence 2016 (30), No. 1, 29 - 51.10.1080/08839514.2016.1138808Search in Google Scholar

[20] A. K. Mohapatra, J. Sanjay Arab. Analytical investigation of parameters affecting the performance of cooled gas turbine cycle with evaporative cooling of inlet air. Arabian Journal for Science and Engineering 2013 (38), No. 6, 1587 - 1597.10.1007/s13369-013-0598-xSearch in Google Scholar

[21] G. Sanjay Barad, P. V. Ramaiah, R. K. Giridhar, G. Krishnaiah. Neural network approach for a combined performance and mechanical health monitoring of a gas turbine engine. Mechanical Systems and Signal Processing 2012 (27), 729 - 742.10.1016/j.ymssp.2011.09.011Search in Google Scholar

[22] J. Jablonská, M. Kozubková, B. Zavadilová, L. Zavadil, S. Fialová. The Investigation of the Cavitation Phenomenon in the Laval Nozzle with Full and Partial Surface Wetting. Journal of Mechanical Engineering - Strojnícky časopis 2017 (67) 67, No. 1, 55 - 68.10.1515/scjme-2017-0006Search in Google Scholar

[23] Md Sazzad Hossain, Zhi Chao Ong, Zubaidah Ismail, Siamak Noroozi, Shin Yee Khoo. Artificial neural networks for vibration based inverse parametric identifications: A review. Applied Soft Computing 2017 (52), 203 - 219.10.1016/j.asoc.2016.12.014Search in Google Scholar

[24] Fethi Bellamine, A. Almansoori, A. Elkamel. Modeling of complex dynamic systems using differential neural networks with the incorporation of a priori knowledge. Applied Mathematics and Computation 2015 (266), 515 - 526.10.1016/j.amc.2015.05.122Search in Google Scholar

[25] E. Swiercz. Classification of parameter changes in a dynamic system with the use of wavelet analysis and neural networks. Advances in Engineering Software 2012 (45), No. 1, 28 - 41.10.1016/j.advengsoft.2011.09.022Search in Google Scholar

[26] H. Nikpey, M. Assadi, P. Breuhaus. Development of an optimized artificial neural network model for combined heat and power micro gas turbines. Applied Energy 2013 (108), 137 - 148.10.1016/j.apenergy.2013.03.016Search in Google Scholar

[27] M. Pástor, P. Frankovský, M. Hagara, P. Lengvarský. The use of optical methods in the analysis of the areas with stress concentration. Journal of Mechanical Engineering - Strojnícky časopis 2018 (68), No. 2, 61 - 76.10.2478/scjme-2018-0018Search in Google Scholar

[28] H. Asgari, X. Chen, M. Morini, M. Pinelli, R. Sainudiin, P. Ruggero Spina, M. Venturini. NARX models for simulation of the start-up operation of a single-shaft gas turbine. Applied Thermal Engineering 2016 (93), 368 - 376.10.1016/j.applthermaleng.2015.09.074Search in Google Scholar

[29] Z. N. Sadough Vanini, K. Khorasani, N. Meskin. Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach. Information Sciences 2014 (259), 234 - 251.10.1016/j.ins.2013.05.032Search in Google Scholar

eISSN:
2450-5471
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics