Open Access

Investigation of Defect Effects on Adhesively Bonded Joint Strength Using Cohesive Zone Modeling


Cite

[1] M. J. Lee, T. M. Cho, W. S. Kim, B. C. Lee, J. J. Lee. Determination of cohesive parameters for a mixed-mode cohesive zone model. International Journal of Adhesion and Adhesives 2010 (30), No. 5, pp. 322-328.10.1016/j.ijadhadh.2009.10.005Search in Google Scholar

[2] Y. H. Lai, M. D. Rakestraw, D. A. Dillard. The cracked lap shear specimen revisited-a closed form solution. International Journal of Solids and Structures 1996 (33), No. 12, pp. 1725-1743.10.1016/0020-7683(95)00124-7Search in Google Scholar

[3] M. Goland, E. Reissner. The stresses in cemented joints. Journal of Applied Mechanics 1944 (66), pp. 17-27.10.1115/1.4009336Search in Google Scholar

[4] F. Szepe. Strength of adhesive-bonded lap joints with respect to change of temperature and fatigue. Experimental Mechanics 1966 (6), No. 5, pp. 280-286.10.1007/BF02327312Search in Google Scholar

[5] L. J. Hart-Smith. Adhesive-bonded single-lap joints. NASA Technical Report CR-112236. Hampton, USA: Langley Research Centre, 1973.Search in Google Scholar

[6] J. Pirvics. Two dimensional displacement-stress distributions in adhesive bonded composite structures. Journal of Adhesion 1974 (6), No. 3, pp. 207-228.10.1080/00218467408075027Search in Google Scholar

[7] S. K. Panigrahi, B. Pradhan. Three dimensional failure analysis and damage propagation behavior of adhesively bonded single lap joints in laminated FRP composites. Journal of Reinforced Plastics and Composites 2007 (26), No. 2, pp. 183-201.10.1177/0731684407070026Search in Google Scholar

[8] M. Venkateswara Rao, K. Mohana Rao, V. Rama Chandra Raju, V. Bala Krishna Murthy, V. V. Sridhara Raju. Three-dimensional finite element analysis of adhesively bonded single lap joints in laminated FRP composites subjected to combined loading with C-F end conditions. Journal of Mechanical Engineering - Strojnícky časopis 2009 (60), No. 5-6, pp. 277-288.Search in Google Scholar

[9] G. R. Wooley, D. R. Carver. Stress concentration factors for bonded lap joint. Journal of Aircraft 1971 (8), pp. 817-820.10.2514/3.44305Search in Google Scholar

[10] M. Y. Tsai, J. Morton. An evaluation of analytical and numerical solutions to the singlelap joint. International Journal of Solids and Structures 1994 (31), No. 18, pp. 2537-2563.10.1016/0020-7683(94)90036-1Search in Google Scholar

[11] L. F. M. Da Silva, R. D. S. G. Campilho. Advances in Numerical Modelling of Adhesive Joints. Heidelberg, Springer, 2011.10.1007/978-3-642-23608-2_1Search in Google Scholar

[12] R. D. S. G. Campilho, M. D. Banea, J. A. B. P. Neto, L. F. M. Da Silva. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion and Adhesives 2013 (44), pp. 48-56.10.1016/j.ijadhadh.2013.02.006Search in Google Scholar

[13] R. D. S. G. Campilho, M. F. S. F. De Moura, A. M. J. P. Barreto, J. J. L. Morais, J. J. M. S. Domingues. Fracture behaviour of damaged wood beams repaired with an adhesively-bonded composite patch. Composites Part A: Applied Science and Manufacturing 2009 (40), No.6-7, pp. 852-859.10.1016/j.compositesa.2009.04.007Search in Google Scholar

[14] P. B. Woelke, M. D. Shields, N. N. Abboud, J. W. Hutchinson. Simulations of ductile fracture in an idealized ship grounding scenario using phenomelogical damage and cohesive zone models. Computational Materials Science 2013 (80), pp. 79-95.10.1016/j.commatsci.2013.04.009Search in Google Scholar

[15] R. D. S. G. Campilho, M. D. Banea, J. A. B. P. Neto, L. F. M. Da Silva. Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations. Journal of Adhesion 2012 (88), No. 4-6, pp. 513-533.10.1080/00218464.2012.660834Search in Google Scholar

[16] R. D. S. G. Campilho, M. F. S. F. De Moura, D. A. Ramantani, J. J. L. Morais, J. J. M. S. Domingues. Buckling behaviour of carbon-epoxy adhesively-bonded scarf repairs. Journal of Adhesion Science and Technology 2009 (23), No. 10-11, pp. 1493-1513.10.1163/156856109X433045Search in Google Scholar

[17] M. M. Abou-Hamda, M. M. Megahed, M. M. I. Hammouda. Fatigue crack growth in double cantilever beam specimen with an adhesive layer. Engineering Fracture Mechanics 1998 (60), No. 5-6, pp. 605-614.10.1016/S0013-7944(98)00018-6Search in Google Scholar

[18] R. D. S. G. Campilho, T. A. B. Fernandes. Comparative evaluation of single-lap joints bonded with different adhesives by cohesive zone modelling. Procedia Engineering 2015 (114), pp. 102-109.10.1016/j.proeng.2015.08.047Search in Google Scholar

[19] G. Mancusi, F. Ascione. Performance at collapse of adhesive bonding. Composite Structures 2013 (96), pp. 256-261.10.1016/j.compstruct.2012.09.027Search in Google Scholar

[20] E. F. Karachalios, R. D. Adams, L. F. M. Da Silva. Strength of single lap joints with artificial defects. International Journal of Adhesion and Adhesives 2013 (45), pp. 69-76.10.1016/j.ijadhadh.2013.04.009Search in Google Scholar

[21] V. A. Maksimyuk, E. A. Storozhuk, I. S. Chernyshenko. Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions. International Applied Mechanics 2013 (49), No. 6, pp. 685-692.10.1007/s10778-013-0602-xSearch in Google Scholar

[22] V. N. Chekhov, S. V. Zakora. Stress concentration in a transversely isotropic spherical shell with two circular rigid inclusions. International Applied Mechanics 2011 (47), pp. 441-448.10.1007/s10778-011-0470-1Search in Google Scholar

[23] I. S. Chernyshenko. Nonlinear deformation of isotropic and orthotropic shells with holes reinforced by a rigid elastic element. International Applied Mechanics 1989 (25), No. 1, pp. 54-59.10.1007/BF00887317Search in Google Scholar

[24] V. P. Shevchenko, S. V. Zakora. On the mutual influence of closely located circular holes with rigid contours in a spherical shell. Journal of Mathematical Sciences 2011 (174), pp. 322-330.10.1007/s10958-011-0301-2Search in Google Scholar

[25] S. V. Zakora, V. N. Chekhov. Stress state of a transversely isotropic spherical shell with a rigid circular inclusion. International Applied Mechanics 2005 (41), No. 12, pp. 1384-1390.10.1007/s10778-006-0046-7Search in Google Scholar

[26] J. D. Engerer, E. Sancaktar. The effects of partial bonding in load carrying capacity of single lap joints. International Journal of Adhesion and Adhesives 2011 (31), No. 5, pp. 373-379.10.1016/j.ijadhadh.2011.01.009Search in Google Scholar

[27] N. G. Berry, J. R. M. D’Almeida. The influence of circular centered defects on the performance of carbon-epoxy single lap joints. Polymer Testing 2002 (21), No. 4, pp. 373-379.10.1016/S0142-9418(01)00099-XSearch in Google Scholar

[28] J. H. Park, J. H. Choi, J. H. Kweon. Evaluating the strengths of thick aluminumtoaluminum joints with different adhesive lengths and thicknesses. Composite Structures 2010 (92), No. 9, pp. 2226-2235.10.1016/j.compstruct.2009.08.037Search in Google Scholar

[29] T. T. Wang, F. W. Ryan, H. Schonhorn. Effect of bonding defects on shear strength in tension of lap joints having brittle adhesives. Journal of Applied Polymer Science 1972 (16), No. 8, pp. 1901-1909.10.1002/app.1972.070160804Search in Google Scholar

[30] M. Olia, J. N. Rossettos. Analysis of adhesively bonded joints with gaps subjected to bending. International Journal of Solids and Structures 1996 (33), No. 18, pp. 2681-2693.10.1016/0020-7683(95)00168-9Search in Google Scholar

[31] A. Chadegani, R. C. Batra. Analysis of adhesive-bonded single-lap joint with an interfacial crack and a void. International Journal of Adhesion and Adhesives 2011 (31), No. 6, pp. 455-465.10.1016/j.ijadhadh.2011.02.006Search in Google Scholar

[32] M. U. Uysala, U. Güvena. Bonded plate having orthotropic inclusion in adhesive layer under in-plane shear loading. Journal of Adhesion 2016 (92), No. 3, pp. 214-235.10.1080/00218464.2015.1019064Search in Google Scholar

[33] L. Prasad, R. Khantwal. Study on breaking load of single lap joint using hybrid joining techniques for alloy steel AISI 4140 and mild steel: Taguchi and neural network approach. Journal of Mechanical Engineering - Strojnícky časopis 2018 (68), No. 1, pp. 51-60.10.2478/scjme-2018-0005Search in Google Scholar

[34] Abaqus 6.13 Analysis User’s Manual, 2012, Simulia. Dassault Systèmes.Search in Google Scholar

[35] A. Turon, C. G. Dávila, P. P. Camanho, J. Costa. An engineering solution for using coarse meshes in the simulation of delamination with cohesive zone models. NASA Technical Memorandum, Technical Report, NASA/TM-2005-213547, L-19109, 2005.Search in Google Scholar

[36] A. Corigliano. Formulation, identification and use of interface models in the numerical analysis of composite delamination. International Journal of Solids and Structures 1993 (30), No. 20, pp. 2779-2811.10.1016/0020-7683(93)90154-YSearch in Google Scholar

[37] P. P. Camanho, C. Davila, M. De Moura. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials 2003 (37), No. 16, pp. 1415-1438.10.1177/0021998303034505Search in Google Scholar

[38] P. W. Harper, S. R. Hallett. Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics 2008 (75), No. 16, pp. 4774-4792.10.1016/j.engfracmech.2008.06.004Search in Google Scholar

[39] M. L. Benzeggagh, M. Kenane. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology 1996 (56), No. 4, pp. 439-449.10.1016/0266-3538(96)00005-XSearch in Google Scholar

[40] K. N. Anyfantis, N. G. Tsouvalis. A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints. Journal of Adhesion Science and Technology 2013 (27), No. 10, pp. 1146-1178.10.1080/01694243.2012.735900Search in Google Scholar

[41] K. N. Anyfantis, N. G. Tsouvalis. A novel traction-separation law for the prediction of the mixed mode response of ductile adhesive joints. International Journal of Solids and Structures 2012 (49), No. 1, pp. 213-226.10.1016/j.ijsolstr.2011.10.001Search in Google Scholar

eISSN:
2450-5471
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics