Open Access

Comparing different post-IR IRSL approaches for the dating of Holocene coastal foredunes from Ruhnu Island, Estonia


Cite

[1] Adamiec G and Aitken M, 1998. Dose-rate conversion factors: update. Ancient TL 16: 37–50. Search in Google Scholar

[2] Andrén T, Björck S, Andren E, Conley LZ and Anjar J, 2011. The development of the Baltic Sea Basin during the Last 130 ka. In: Harff J, Björck S and Hoth P, eds., The Baltic Sea Basin. Central and Eastern European Development Studies, Springer, Berlin: 75–97. http://dx.doi.org/10.1007/978-3-642-17220-5_410.1007/978-3-642-17220-5_4Search in Google Scholar

[3] Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0. http://dx.doi.org/10.1016/S1350-4487(03)00018-010.1016/S1350-4487(03)00018-0Search in Google Scholar

[4] Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360. 10.1017/S0033822200033865Search in Google Scholar

[5] Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007. http://dx.doi.org/10.1016/j.radmeas.2009.02.00710.1016/j.radmeas.2009.02.007Search in Google Scholar

[6] Ekman M, 1996. A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8(2): 158–165, DOI 10.1111/j.1365-3121.1996.tb00739.x. http://dx.doi.org/10.1111/j.1365-3121.1996.tb00739.x10.1111/j.1365-3121.1996.tb00739.xSearch in Google Scholar

[7] Gaar D and Preusser F, 2012. Luminescence dating of mammoth re-mains from northern Switzerland. Quaternary Geochronology 10: 257–263, DOI 10.1016/j.quageo.2012.02.007. http://dx.doi.org/10.1016/j.quageo.2012.02.00710.1016/j.quageo.2012.02.007Search in Google Scholar

[8] Hesp P, 2002. Foredunes and blow outs: initiation, geomorphology and dynamics. Geomorphology 48(1–3): 245–268, DOI 10.1016/S0169-555X(02)00184-8. http://dx.doi.org/10.1016/S0169-555X(02)00184-810.1016/S0169-555X(02)00184-8Search in Google Scholar

[9] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013. http://dx.doi.org/10.1139/e01-01310.1139/e01-013Search in Google Scholar

[10] Jain M and Ankjærgaard C, 2011. Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements 46(3): 292–309, DOI 10.1016/j.radmeas.2010.12.004. http://dx.doi.org/10.1016/j.radmeas.2010.12.00410.1016/j.radmeas.2010.12.004Search in Google Scholar

[11] Kala E and Einasto R, 1979. Liivi lahe piirkonna geoloogiline ehitus ja areng. (Geology and development of the Gulf of Riga region). Ees-ti Loodus 11: 708–711 (in Estonian). Search in Google Scholar

[12] Kars RH, Busschers FS and Wallinga J, 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12: 74–86, DOI 10.1016/j.quageo.2012.05.001. http://dx.doi.org/10.1016/j.quageo.2012.05.00110.1016/j.quageo.2012.05.001Search in Google Scholar

[13] Kask J, Lepland A and Perens R, 1994. Geology of the Island of Ruhnu from the remote past up to date. Eesti TA Geoloogia Instituut and Eesti Geoloogiakeskus, Tallinn-Kuressaare (in Estonian with Eng-lish summary). Search in Google Scholar

[14] Kriiska A and Lõugas L, 2005. Formation of Ruhnu Island and its early settlement history. Estonia Maritima 7: 119–132. Search in Google Scholar

[15] Kulig G, 2005. Erstellung einer Auswertesoftware zur Altersbestimmung mittels Lumineszenzverfahren. BSc thesis, Faculty of Mathematics and Informatics TU Freiberg, Germany (unpublished). Search in Google Scholar

[16] Li B and Li S-H, 2011. Luminescence dating of K-feldspar from sedi-ments: A protocol without anomalous fading correction. Quaternary Geochronology 6: 468–479, DOI 10.1016/j.quageo.2011.05.001. http://dx.doi.org/10.1016/j.quageo.2011.05.00110.1016/j.quageo.2011.05.001Search in Google Scholar

[17] Li B, Roberts RG and Jacobs Z, 2013. On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: Improved procedures for luminescence dating of Quater-nary sediments. Quaternary Geochronology 17: 1–13, DOI 10.1016/j.quageo.2013.03.006. http://dx.doi.org/10.1016/j.quageo.2013.03.00610.1016/j.quageo.2013.03.006Search in Google Scholar

[18] Lowick SE, Trauerstein M and Preusser F, 2012. Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8: 33–40, DOI 10.1016/j.quageo.2011.12.003. http://dx.doi.org/10.1016/j.quageo.2011.12.00310.1016/j.quageo.2011.12.003Search in Google Scholar

[19] Madsen AT, Buylaert JP and Murray AS, 2011. Luminescence dating of young coastal deposits from New Zealand using feldspar. Geochronometria 38(4): 379–390, DOI 10.2478/s13386-011-0042-5. http://dx.doi.org/10.2478/s13386-011-0042-510.2478/s13386-011-0042-5Search in Google Scholar

[20] Olley JM, Roberts RG and Murray AS, 1997. Disequilibria in the uranium decay series in sedimentary deposits at Allen’s Cave, Nullarbor Plain, Australia: Implications for dose rate determinations. Radiation Measurements 27(2): 433–443, DOI 10.1016/S1350-4487(96)00114-X. http://dx.doi.org/10.1016/S1350-4487(96)00114-X10.1016/S1350-4487(96)00114-XSearch in Google Scholar

[21] Prescott J and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8. http://dx.doi.org/10.1016/1350-4487(94)90086-810.1016/1350-4487(94)90086-8Search in Google Scholar

[22] Preusser F and Kasper HU, 2001. Comparison of dose rate determination using high-resolution gamma spectrometry and inductively coupled plasma-mass spectrometry. Ancient TL 19: 19–24. Search in Google Scholar

[23] Preusser F, Ramseyer K and Schlüchter C, 2006. Characterisation of low OSL intensity quartz from the New Zealand Alps. Radiation Measurements 41(7–8): 871–877, DOI 10.1016/j.radmeas.2006.04.019. http://dx.doi.org/10.1016/j.radmeas.2006.04.01910.1016/j.radmeas.2006.04.019Search in Google Scholar

[24] Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using K-rich feldspars for optical dating of young coastal sediments — a test case from Darss-Zingst peninsula (southern Baltic Sea coast). Quaternary Geochronology 6: 207–222, DOI 10.1016/j.quageo.2010.10.001. http://dx.doi.org/10.1016/j.quageo.2010.10.00110.1016/j.quageo.2010.10.001Search in Google Scholar

[25] Reimann T and Tsukamoto S, 2012. Dating the recent past (<500 years) by post-IR IRSL feldspar — Examples from the North Sea and Bal-tic Sea coast. Quaternary Geochronology 10: 180–187, DOI 10.1016/j.quageo.2012.04.011. http://dx.doi.org/10.1016/j.quageo.2012.04.01110.1016/j.quageo.2012.04.011Search in Google Scholar

[26] Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser K F, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM and van der Plicht J, 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55: 1869–1887. http://dx.doi.org/10.2458/azu_js_rc.55.1694710.2458/azu_js_rc.55.16947Search in Google Scholar

[27] Richter D, Pintaske R, Dornich K and Krbetscheck M, 2012. A novel beta source design for uniform irradiation in dosimetric application. Ancient TL 30: 57–63. Search in Google Scholar

[28] Richter D, Richter A and Dornich K, 2013. Lexsyg — A new system for luminescence research. Geochronometria 40(4): 220–228, DOI 10.2478/s13386-013-0110-0. http://dx.doi.org/10.2478/s13386-013-0110-010.2478/s13386-013-0110-0Search in Google Scholar

[29] Rosentau A, Veski S, Kriiska A, Aunap R, Vassiljev J, Saarse L, Hang T, Heinsalu A and Oja T, 2011. Palaeogeographic model for the SW Estonian coastal zone of the Baltic Sea. In: Harff J, Björck S and Hoth P, eds., The Baltic Sea Basin. Central and Eastern Euro-pean Development Studies, Springer, Berlin: 165–188. 10.1007/978-3-642-17220-5_8Search in Google Scholar

[30] Rosentau A, Joeleht A, Plado J, Aunap R, Muru M and Eskola KO, 2013. Development of the Holocene foredune plain in the Narva-Joesuu area, eastern Gulf of Finland. Geological Quarterly 57(1): 89–100, DOI 10.7306/gq.1077. 10.7306/gq.1077Search in Google Scholar

[31] Saarse L, Vassiljev J and Miidel A, 2003. Simulation of the Baltic Sea shorelines in Estonia and neighbouring areas. Journal of Coastal Research 19: 261–268. Search in Google Scholar

[32] Saarse L, Vassiljev J, Miidel A and Niinemets E, 2006. Holocene buried organic sediments in Estonia. Proceedings Estonian Academy of Sciences - Geology 55: 296–320. 10.3176/geol.2006.4.03Search in Google Scholar

[33] Saarse L, Vassiljev J and Rosentau A, 2009. Ancylus Lake and Litorina Sea transition on the Island of Saaremaa, Estonia: a pilot study. Baltica 22: 51–62. Search in Google Scholar

[34] Steffen D, Preusser F and Schlunegger F, 2009. OSL quartz age under-estimation due to unstable signal components. Quaternary Geo-chronology 4(5): 353–362, DOI 10.1016/j.quageo.2009.05.015. 10.1016/j.quageo.2009.05.015Search in Google Scholar

[35] Thiel C, Buylaert JP, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess pro-file (Austria) — Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI 10.1016/j.quaint.2010.05.018. http://dx.doi.org/10.1016/j.quaint.2010.05.01810.1016/j.quaint.2010.05.018Search in Google Scholar

[36] Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laborato-ry fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002. http://dx.doi.org/10.1016/j.radmeas.2008.06.00210.1016/j.radmeas.2008.06.002Search in Google Scholar

[37] Veski S, Heinsalu A, Klassen V, Kriiska A, Lõugas L, Poska A and Saluäär U, 2005. Early Holocene coastal settlement and palaeoen-vironment on the shore of the Baltic Sea at Pärnu, southwestern Estonia. Quaternary International 130(1): 75–85, DOI 10.1016/j.quaint.2004.04.033. http://dx.doi.org/10.1016/j.quaint.2004.04.03310.1016/j.quaint.2004.04.033Search in Google Scholar

[38] Wallinga J, Bos AJJ, Dorenbos P, Murray AS and Schokker J, 2007. A test case for anomalous fading correction in IRSL dating. Quater-nary Geochronology 2(1–4): 216–221, DOI 10.1016/j.quageo.2006.05.014. http://dx.doi.org/10.1016/j.quageo.2006.05.01410.1016/j.quageo.2006.05.014Search in Google Scholar

[39] Wintle AG, 1973. Anomalous fading of thermo-luminescence in miner-al samples. Nature 245: 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a010.1038/245143a0Search in Google Scholar

[40] Zander A, Degering D, Preusser F, Kasper HU and Brückner H, 2007. Optically stimulated luminescence dating of sublittoral and intertidal sediments from Dubai, UAE.: Radioactive disequilibria in the uranium decay series. Quaternary Geochronology 2(1–4): 123–128, DOI 10.1016/j.quageo.2006.04.003. http://dx.doi.org/10.1016/j.quageo.2006.04.00310.1016/j.quageo.2006.04.003Search in Google Scholar

eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other