Open Access

Response of cathodoluminescence of alkali feldspar to He+ ion implantation and electron irradiation

Geochronometria's Cover Image
Geochronometria
Special Issue Title: Proceedings of the 3rd Asia Pacific Conference on Luminescence and Electron Spin Resonance Dating Okayama, Japan, 2012

Cite

[1] Bragg WH and Kleeman R, 1905. Alpha particles or radium, and their loss of range passing through various atoms and molecules. Philosophical Magazine 10: 318–334. http://dx.doi.org/10.1080/1478644050946337810.1080/14786440509463378Search in Google Scholar

[2] Faul H, 1954. Nuclear Geology. John Wiley, New York, 414. Search in Google Scholar

[3] Finch AA and Klein J, 1999. The causes and petrological significance of cathodoluminescence emission from alkali feldspars. Contributions to Mineralogy and Petrology 135: 234–243. http://dx.doi.org/10.1007/s00410005050910.1007/s004100050509Search in Google Scholar

[4] Guerin G and Valldas G, 1980. Thermoluminescence dating of volcanic plagioclase. Nature 286: 697–699, DOI 10.1038/286697a0. http://dx.doi.org/10.1038/286697a010.1038/286697a0Search in Google Scholar

[5] Götze J, Krbetschek MR, Habermann D and Wold D, 2000. High-resolution cathodoluminescence of feldspar minerals. In: Pagel M, Barbin V, Blanc P and Ohnenstetter D, eds., Cathodoluminescence Geosciences. Springer Verlag, Berlin, 245–270. http://dx.doi.org/10.1007/978-3-662-04086-7_1010.1007/978-3-662-04086-7_10Search in Google Scholar

[6] Huntley DJ, Godfrey-Smith DI and Thewalt MLW, 1985. Optical dating of sediments. Nature 313: 105–107, DOI 10.1038/313105a0. http://dx.doi.org/10.1038/313105a010.1038/313105a0Search in Google Scholar

[7] Ikenaga M, Nishido H and Ninagawa K, 2000. Performance and analytical conditions of cathodoluminescence scanning electron micro-scope (CL-SEM). The Bulletin of Research Institute of Natural Sciences Okayama University of Science. 26: 61–75. Search in Google Scholar

[8] Kayama M, Nakano S and Nishido H, 2010. Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution. American Mineralogist 95: 1783–1795. http://dx.doi.org/10.2138/am.2010.342710.2138/am.2010.3427Search in Google Scholar

[9] Kayama M, Nishido H, Toyoda S, Komuro K, Finch AA, Lee MR and Ninagawa K, in submitted. Cathodoluminescence properties of radiation-induced alkali feldspars. American Mineralogist. Search in Google Scholar

[10] Kayama M, Nishido H, Toyoda S, Komuro K and Ninagawa K, 2011a. Radiation effects on cathodoluminescence of albite. American Mineralogist 96: 1238–1247. http://dx.doi.org/10.2138/am.2011.378010.2138/am.2011.3780Search in Google Scholar

[11] Kayama M, Nishido H, Toyoda S, Komuro K and Ninagawa K, 2011b. Combined Cathodoluminescence and Micro-Raman Study of Helium-Ion-Implanted Albite. Spectroscopy Letters. 44: 526–529. http://dx.doi.org/10.1080/00387010.2011.61041510.1080/00387010.2011.610415Search in Google Scholar

[12] Kayama M, Nishido H, Toyoda S, Komuro K, Finch AA, Lee MR and Ninagawa K, 2013. He+ ion implantation and electron irradiation effects on cathodoluminescence of plagioclase. Physics and Chemistry of Minerals 40(7): 531–545, DOI 10.1007/s00269-013-0590-8. http://dx.doi.org/10.1007/s00269-013-0590-810.1007/s00269-013-0590-8Search in Google Scholar

[13] King GE, Finch AA, Robinson RAJ and Hole DE, 2011. The problem of dating quartz 1: Spectroscopic ionoluminescence of dose de-pendence. Radiation Measurements 46(1): 1–9, DOI 10.1016/j.radmeas.2010.07.031. http://dx.doi.org/10.1016/j.radmeas.2010.07.03110.1016/j.radmeas.2010.07.031Search in Google Scholar

[14] Komuro K, Horikawa Y and Toyoda S, 2002. Development of radiation-damage halos in low-quartz: cathodoluminescence measurement after He+ ion implantation. Mineralogy and Petrology 76(3-4): 261–266, DOI 10.1007/s007100200045. http://dx.doi.org/10.1007/s00710020004510.1007/s007100200045Search in Google Scholar

[15] Krickl R, Nasdala L, Götze J, Grambole D and Wirth R, 2008. Alpha-irradiation effects in SiO2. European Journal of Mineralogy. 20: 517–522, DOI 10.1127/0935-1221/2008/0020-1842. http://dx.doi.org/10.1127/0935-1221/2008/0020-184210.1127/0935-1221/2008/0020-1842Search in Google Scholar

[16] Lee MR, Parsons I, Edwards PR and Martin RW, 2007. Identification of cathodoluminescence activators in zoned alkali feldspars by hyper-spectral imaging and electron-probe microanalysis. American Mineralogist 92: 243–253. http://dx.doi.org/10.2138/am.2007.216010.2138/am.2007.2160Search in Google Scholar

[17] Lowitzer S, Wilson DJ, Winkler B, Milman V and Gale JD, 2008. Defect properties of albite: A combined empirical potential and density functional theory study. Physics and Chemistry of Minerals 35(3): 129–135, DOI 10.1007/s00269-007-0204-4. http://dx.doi.org/10.1007/s00269-007-0204-410.1007/s00269-007-0204-4Search in Google Scholar

[18] Mariano AN, Ito J and Ring PJ, 1973. Cathodoluminescence of plagioclase feldspars. Geological Society of America, Abstract Program 5: 726. Search in Google Scholar

[19] Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC and Möller A, 2006. Alpha particle haloes in chlorite and cordierite. Mineralogy and Petrology 86(1–2): 1–27, DOI 10.1007/s00710-005-0104-6. http://dx.doi.org/10.1007/s00710-005-0104-610.1007/s00710-005-0104-6Search in Google Scholar

[20] Nogami H and Hurley PM, 1948. The absorption factor in counting alpha rays from thick mineral sources. American Geophysical Union Transactions. 29: 335–340. http://dx.doi.org/10.1029/TR029i003p0033510.1029/TR029i003p00335Search in Google Scholar

[21] Okumura T, Nishido H, Toyoda S, Kaneko T, Kosugi S and Sawada Y, 2008. Evaluation of radiation-damage halos in quartz by cathodo-luminescence as a geochronological tool. Quaternary Geochronology 3(4): 342–345, DOI 10.1016/j.quageo.2008.01.006. http://dx.doi.org/10.1016/j.quageo.2008.01.00610.1016/j.quageo.2008.01.006Search in Google Scholar

[22] Owen MR, 1988. Radiation-damage halos in quartz. Geology 16: 529–532, DOI 10.1130/0091-7613(1988)016〈0529:RDHIQ〉2.3.CO;2. http://dx.doi.org/10.1130/0091-7613(1988)016<0529:RDHIQ>2.3.CO;210.1130/0091-7613(1988)016<0529:RDHIQ>2.3.CO;2Search in Google Scholar

[23] Parsons I, Steele DA, Lee MR and Magee CW, 2008. Titanium as a cathodoluminescence activator in alkali feldspar. American Mineralogist 93: 875–879. http://dx.doi.org/10.2138/am.2008.271110.2138/am.2008.2711Search in Google Scholar

[24] Petrov I, 1994. Lattice-stabilized CH3, C2H3, NO2, and O1− radicals in feldspar with different Al-Si order. American Mineralogist 79: 221–239. Search in Google Scholar

[25] Shirai M, Tsukamoto S and Kondo R, 2008. Transport-depositional processes of present fluvial deposits estimated from OSL intensity of sand-size grains. Quaternary Research 47(3): 337–389, DOI 10.1006/qres.1997.1894. 10.4116/jaqua.47.377Search in Google Scholar

[26] Soika C and Delincée H, 2000. Thermoluminescence analysis for detection of irradiated food-effects of dose rate on the glow curves of quartz. Lebensmittel-Wissensvhaft & Technologie. 33: 440. 10.1006/fstl.2000.0682Search in Google Scholar

[27] Sprague AL, Emery JP, Donldson KL, Russel RW, Lynch DK and Mazuk AL, 2002. Mercury: mid infrared (3–13 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteoritics and Planetary Science 37(9): 1255–1268, DOI 10.1111/j.1945-5100.2002.tb00894.x. http://dx.doi.org/10.1111/j.1945-5100.2002.tb00894.x10.1111/j.1945-5100.2002.tb00894.xSearch in Google Scholar

[28] Stevens-Kalceff MA, Matthew RP, Anthony RM and Kalceff W, 2000. Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. In: Pagel M, Barbin V, Blanc P and Ohnenstetter D, eds., Cathodoluminescence in Geosciences. Springer, Berlin, 8: 193–223. http://dx.doi.org/10.1007/978-3-662-04086-7_810.1007/978-3-662-04086-7_8Search in Google Scholar

[29] Telfer DJ and Walker G, 1978. Ligand field bands of Mn2+ and Fe3+ luminescence centers and their site occupancy in plagioclase feldspar. Modern Geology 6: 199–210. Search in Google Scholar

[30] Vaggelli G, Borghi A, Cossio R, Fedi M, Fiora L, Giuntini L, Massi M and Olmi F, 2005. Combined micro-PIXE facility and monochromatic cathodoluminescence spectroscopy to coloured minerals of natural stones: an example from amazonite. X-ray spectrometry 34: 345–349. http://dx.doi.org/10.1002/xrs.83110.1002/xrs.831Search in Google Scholar

[31] Wintle AG and Huntly DJ, 1979. Thermoluminescence dating of a deep-sea sediment core. Nature 279: 710–712, DOI 10.1038/279710a0. http://dx.doi.org/10.1038/279710a010.1038/279710a0Search in Google Scholar

[32] Wurz P and Lammer H, 2003. Monte-Carlo simulation of Mercury’s exosphere. Icarus 164(1): 1–13, DOI 10.1016/S0019-1035(03)00123-4. http://dx.doi.org/10.1016/S0019-1035(03)00123-410.1016/S0019-1035(03)00123-4Search in Google Scholar

eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other