Open Access

Anomalous fading and crystalline structure: Studies on individual chondrules from the same parent body

Geochronometria's Cover Image
Geochronometria
Special Issue Title: Proceedings of the 3rd Asia Pacific Conference on Luminescence and Electron Spin Resonance Dating Okayama, Japan, 2012

Cite

[1] Afouxenidis D, Polymeris GS, Tsirliganis NC and Kitis G, 2012. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry 149(4): 363–370, DOI 10.1093/rpd/ncr315. http://dx.doi.org/10.1093/rpd/ncr31510.1093/rpd/ncr315Search in Google Scholar

[2] Berger GW, 1985. Thermoluminescence dating of volcanic ash. Journal of Volcanology and Geothermal Research 25(3–4): 333–347, DOI 10.1016/0377-0273 (85)90020-4. http://dx.doi.org/10.1016/0377-0273(85)90020-410.1016/0377-0273(85)90020-4Search in Google Scholar

[3] Biswas RH, Morthekai P, Gartia RK, Chawla S and Singhvi AK, 2011. Thermoluminescence of the meteorite interior: A possible tool for the estimation of cosmic ray exposure ages. Earth and Planetary Science Letters 304(1–2): 36–44, DOI 10.1016/j.epsl.2011.01.012. http://dx.doi.org/10.1016/j.epsl.2011.01.01210.1016/j.epsl.2011.01.012Search in Google Scholar

[4] Bøtter-Jensen L, Thomsen KJ and Jain M, 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45(3–6): 253–257, DOI 10.1016/j.radmeas.2009.11.030. http://dx.doi.org/10.1016/j.radmeas.2009.11.03010.1016/j.radmeas.2009.11.030Search in Google Scholar

[5] Dodd RT, 1981. Meteorites — A Petrologic-Chemical Synthesis, Cambridge, New York. Search in Google Scholar

[6] Garlick GFJ and Robinson JE, 1972. The thermoluminescence of lunar sample. In the Moon (Edited by Runcorn SK and Urrey H). International astronomical unit: 324–329. 10.1007/978-94-010-2861-5_29Search in Google Scholar

[7] Hasan FA, Keck BD, Hartmetz C and Sears DWG, 1986. Anomalous fading of thermoluminescence in meteorites. Journal of Luminescence 34(6): 327–335, DOI 10.1016/0022-2313(86)90076-1. http://dx.doi.org/10.1016/0022-2313(86)90076-110.1016/0022-2313(86)90076-1Search in Google Scholar

[8] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013. http://dx.doi.org/10.1139/e01-01310.1139/e01-013Search in Google Scholar

[9] Huntley DJ and Lian OB, 2006. Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quaternary Science Reviews 25(19–20): 2503–2512, DOI 10.1016/j.quascirev.2005.05.011. http://dx.doi.org/10.1016/j.quascirev.2005.05.01110.1016/j.quascirev.2005.05.011Search in Google Scholar

[10] Huss GR, Rubin AE and Grossman JN, 2006. Thermal Metamorphism in Chondrites. Meteorites and the Early Solar System II (Edited by Lauretta DS and McSween H Y Jr.). University of Arizona Press, Tucson: 567–586. 10.2307/j.ctv1v7zdmm.34Search in Google Scholar

[11] Jaek I, Molodkov A and Vasilchenko V, 2007. Possible reasons for anomalous fading in alkali feldspars used for luminescence dating of quaternary deposits. Estonian Journal of Earth Sciences 56(3): 167–178. Search in Google Scholar

[12] Keck BD, Kyle Guimon R and Sears DWG, 1986. Chemical and physical studies of type 3 chondrites, VII. Annealing studies of the Dhajala H3.8 chondrite and the thermal history of chondrules and chondrites. Earth and Planetary Science Letters 77(3–4): 419–427, DOI 10.1016/0012-821x (86)90151-2. http://dx.doi.org/10.1016/0012-821X(86)90151-210.1016/0012-821X(86)90151-2Search in Google Scholar

[13] Melcher CL, 1981. Thermoluminescence of meteorites and their orbits. Earth and Planetary Science Letters 52(1): 39–54, DOI 10.1016/0012-821X(81)90206-5. http://dx.doi.org/10.1016/0012-821X(81)90206-510.1016/0012-821X(81)90206-5Search in Google Scholar

[14] Poolton NRJ, Ozanyan KB, Wallinga J, Murray AS and Bøtter-Jensen L, 2002a. Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes. Physics and Chemistry of Minerals 29(3): 217–225, DOI 10.1007/s00269-001-0218-2. http://dx.doi.org/10.1007/s00269-001-0218-210.1007/s00269-001-0218-2Search in Google Scholar

[15] Poolton NRJ, Wallinga J, Murray AS, Bulur E and Bøtter-Jensen L, 2002b. Electrons in feldspar I: On the wavefunction of electrons trapped at simple lattice defects. Physics and Chemistry of Minerals 29(3): 210–216, DOI 10.1007/s00269-001-0217-3. http://dx.doi.org/10.1007/s00269-001-0217-310.1007/s00269-001-0217-3Search in Google Scholar

[16] Randall JT and Wilkinson MHF, 1945. Phosphorescence and electron traps. Proceedingsof the Royal Society A 184(999): 365–389, DOI 10.1098/rspa.1945.0024. http://dx.doi.org/10.1098/rspa.1945.002410.1098/rspa.1945.0024Search in Google Scholar

[17] Sears DW and Durrani SA, 1980. Thermoluminescence and the terrestrial age of meteorites: Some recent results. Earth and Planetary Science Letters 46(2): 159–166, DOI 10.1016/0012-821X(80)90002-3. http://dx.doi.org/10.1016/0012-821X(80)90002-310.1016/0012-821X(80)90002-3Search in Google Scholar

[18] Sears DW, Grossman JN, Melcher CL, Ross LM and Mills AA, 1980. Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287(5785): 791–795, DOI 10.1038/287791a0. http://dx.doi.org/10.1038/287791a010.1038/287791a0Search in Google Scholar

[19] Sears DWG, 1988. Thermoluminescence of meteorites: Shedding light on the cosmos. International Journal of Radiation Applications and Instrumentation. Part D 14(1–2): 5–17, DOI 10.1016/1359-0189(88)90036-2. 10.1016/1359-0189(88)90036-2Search in Google Scholar

[20] Sears DWG, Sparks MH and Rubin AE, 1984. Chemical and physical studies of type 3 chondrites-III. Chondrules from the Dhajala H3.8 chondrite. Geochimica et Cosmochimica Acta 48(6): 1189–1200, DOI 10.1016/0016-7037(84)90055-3. http://dx.doi.org/10.1016/0016-7037(84)90055-310.1016/0016-7037(84)90055-3Search in Google Scholar

[21] Sears DWG and Weeks KS, 1983. Chemical and physical studies of type 3 chondrites — II: Thermoluminescence of sixteen type 3 ordinary chondrites and relationships with oxygen isotopes. Journal of Geophysical Research 88: 301–311, DOI 10.1029/JB088iS01p0B301. http://dx.doi.org/10.1029/JB088iS01p0B30110.1029/JB088iS01p0B301Search in Google Scholar

[22] Tyler S and McKeever SWS, 1988. Anomalous fading of thermoluminescence in oligoclase. International Journal of Radiation Applications and Instrumentation. Part D 14(1–2): 149–154, DOI 10.1016/1359-0189(88)90056-8. 10.1016/1359-0189(88)90056-8Search in Google Scholar

[23] Visocekas R, 1985. Tunnelling radiative recombination in labradorite: Its association with anomalous fading of thermoluminescence. Nuclear Tracks and Radiation Measurements (1982) 10(4–6): 521–529, DOI 10.1016/0735-245X(85)90053-5. http://dx.doi.org/10.1016/0735-245X(85)90053-510.1016/0735-245X(85)90053-5Search in Google Scholar

[24] Visocekas R, 2002. Tunnelling in afterglow, its coexistence and interweaving with thermally stimulated luminescence. Radiation Protection Dosimetry 100(1–4): 45–54. http://dx.doi.org/10.1093/oxfordjournals.rpd.a00591110.1093/oxfordjournals.rpd.a005911Search in Google Scholar

[25] Wintle AG, 1973. Anomalous fading of thermo-luminescence in mineral samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a010.1038/245143a0Search in Google Scholar

[26] Yu Y and Hewins RH, 1998. Transient heating and chondrule formation: Evidence from sodium loss in flash heating simulation experiments. Geochimica et Cosmochimica Acta 62(1): 159–172, DOI 10.1016/s0016-7037 (97)00321-9. http://dx.doi.org/10.1016/S0016-7037(97)00321-910.1016/S0016-7037(97)00321-9Search in Google Scholar

[27] Zanda B, 2004. Chondrules. Earth and Planetary Science Letters 224(1–2): 1–17, DOI 10.1016/j.epsl.2004.05.005. http://dx.doi.org/10.1016/j.epsl.2004.05.00510.1016/j.epsl.2004.05.005Search in Google Scholar

eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other