Open Access

Investigating the resetting of OSL signals in rock surfaces

Geochronometria's Cover Image
Geochronometria
Special Issue Title: Proceedings of the 2nd Asia Pacific Conference on Luminescence Dating, Ahmedabad, India, 2009. Part II Issue Editors: Andrzej Bluszcz, Silesian University of Technology, Gliwice, Poland. Andrzej.Bluszcz@polsl.pl Sheng-Hua Li, The University of Hong Kong, Hong Kong, China. shli@hku.hk Ashok Kumar Singhvi, Physical Research Laboratory, Ahmedabad, India. singhvi@prl.res.in

Cite

[1] Aitken MJ, 1985. Thermoluminescnce dating. Academic Press. London. Search in Google Scholar

[2] Blair MW, Yukihara EG, McKeever SWS, 2005. Experiences with single-aliquot OSL procedures using coarse-grain feldspar. Radiation Measurements 39(4): 361–374, DOI 10.1016/j.radmeas.2004.05.008. http://dx.doi.org/10.1016/j.radmeas.2004.05.00810.1016/j.radmeas.2004.05.008Search in Google Scholar

[3] Buylaert JP, Vandeberghe D, Murray AS, Huot S, De Corte F, Van den haute P, 2007. Luminescence dating of old (>70 ka) Chinese loess: A comparison of single-aliquot OSL and IRSL techniques. Quaternary Geochronology 2(1–4): 9–14, DOI 10.1016/j.quageo.2006.05.028. http://dx.doi.org/10.1016/j.quageo.2006.05.02810.1016/j.quageo.2006.05.028Search in Google Scholar

[4] Buylaert JP, Murray AS, Thomsen KJ, Jain M, 2009. Testing the potential of an elevated IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007. http://dx.doi.org/10.1016/j.radmeas.2009.02.00710.1016/j.radmeas.2009.02.007Search in Google Scholar

[5] Bøtter-Jensen L, Andersen CE, Duller GAT, Murray AS, 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37(4–5): 535–541, DOI 10.1016/S1350-4487(03)00020-9. http://dx.doi.org/10.1016/S1350-4487(03)00020-910.1016/S1350-4487(03)00020-9Search in Google Scholar

[6] Jain M, Lindvold LR, 2007. Blue light stimulation and linearly modulated optically stimulated luminescence. Ancient TL 25(2): 69–80. Search in Google Scholar

[7] Greilich S, Glasmacher UA, Wagner GA, 2005. Optical dating of granitic stone surfaces. Archaeometry 47(3): 645–665, DOI 10.1111/j.1475-4754.2005.00224.x. http://dx.doi.org/10.1111/j.1475-4754.2005.00224.x10.1111/j.1475-4754.2005.00224.xSearch in Google Scholar

[8] Habermann J, Schilles T, Kalchgruber R, Wagner GA, 2000. Steps towards surface dating using luminescence. Radiation Measurements 32(5–6): 847–851, DOI 10.1016/S1350-4487(00)00066-4. http://dx.doi.org/10.1016/S1350-4487(00)00066-410.1016/S1350-4487(00)00066-4Search in Google Scholar

[9] Hunley DJ, Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38: 1093–1106. DOI 10.1139/cjes-38-7-1093. http://dx.doi.org/10.1139/e01-01310.1139/e01-013Search in Google Scholar

[10] Klasen N, Fiebig M, Preusser F, Radtke U, 2006. Luminescence properties of glaciofluvial sediments from the Bavarian Alpine Foreland. Radiation Measurements 41(7–8): 886–870, DOI 10.1016/j.radmeas.2006.05.016. 10.1016/j.radmeas.2006.04.014Search in Google Scholar

[11] Liritzis I, 1994. A new dating method by thermoluminescence of carved megalithic stone building. Comptes Rendus de l’Académie des Sciences-Série II 319: 603–610. Search in Google Scholar

[12] Liritzis I, Guibert P, Foti F, Schvoerer M, 1997. The temple of Apollo (Delphi) strengthens novel thermoluminescence dating method. Geoarchaeology 12(5): 479–496, DOI 10.1002/(SICI)1520-6548(199708)12:5〈479::AID-GEA3〉3.0.CO;2-X. http://dx.doi.org/10.1002/(SICI)1520-6548(199708)12:5<479::AID-GEA3>3.0.CO;2-X10.1002/(SICI)1520-6548(199708)12:5<479::AID-GEA3>3.0.CO;2-XSearch in Google Scholar

[13] Liritzis I and Galloway RB, 1999. Dating implications from solar bleaching of thermoluminescence of ancient marble. Journal of Radioanalytic and Nuclear Chemistry 241(2): 361–368, DOI 10.1007/BF02347476. http://dx.doi.org/10.1007/BF0234747610.1007/BF02347476Search in Google Scholar

[14] Liritzis I, Sideris C, Vafiadou A, Mitsis J, 2007. Mineralogical, petrological and radioactivity aspects of some building material from Egyption Old Kingdom monuments. Journal of Cultural Heritage 9(1): 1–13, DOI 10.1016/j.culher.2007.03.009. http://dx.doi.org/10.1016/j.culher.2007.03.00910.1016/j.culher.2007.03.009Search in Google Scholar

[15] Liritzis I, Kitis G, Galloway RB, Vafiadou A, Tsirliganis NC, Polymeris G, 2008. Probing luminescence dating of archaeologically significant carved rock types. Mediterranean Archaeology and Archaeometry 8(1): 61–79. Search in Google Scholar

[16] Madsen AT and Murray AS, 2009. Optically stimulated dating of young sediments: A review. Geomorphology 109(1–2): 3–16, DOI 10.1016/j.geomorph.2008.08.020. http://dx.doi.org/10.1016/j.geomorph.2008.08.02010.1016/j.geomorph.2008.08.020Search in Google Scholar

[17] Mejdahl V, 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21(1): 61–72, DOI 10.1111/j.1475-4754.1979.tb00241.x. http://dx.doi.org/10.1111/j.1475-4754.1979.tb00241.x10.1111/j.1475-4754.1979.tb00241.xSearch in Google Scholar

[18] Morgenstein ME, Luo S, Ku TL, Feathers J, 2003. Uraniumseries and luminescence dating of volcanic lithic artefacts. Archaeometry 45(3): 503–518, DOI 10.1111/1475-4754.00124. http://dx.doi.org/10.1111/1475-4754.0012410.1111/1475-4754.00124Search in Google Scholar

[19] Moska P, Murray AS, 2006. Stability of the quartz fast-component in insensitive samples. Radiation Measurements 41(7–8): 878–885, DOI 10.1016/j.radmeas.2006.06.005. http://dx.doi.org/10.1016/j.radmeas.2006.06.00510.1016/j.radmeas.2006.06.005Search in Google Scholar

[20] Murray AS, Marten R, Johnston A, Martin P, 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry 115(2): 263–288, DOI 10.1007/BF02037443. http://dx.doi.org/10.1007/BF0203744310.1007/BF02037443Search in Google Scholar

[21] Murray AS, Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32(1): 57–73, DOI 10.1016/S1350-4487(99)00253-X. http://dx.doi.org/10.1016/S1350-4487(99)00253-X10.1016/S1350-4487(99)00253-XSearch in Google Scholar

[22] NASA, 2010. NASA surface metrology and solar energy. http://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi. Search in Google Scholar

[23] Polikreti K, Michael CT, Maniatis Y, 2002. Authenticating marble sculpture with thermoluminescence. Ancient TL 20(1): 11–18. Search in Google Scholar

[24] Polikreti K, Michael CT, Maniatis Y, 2003. Thermoluminescence characteristics of marble and dating of freshly excavated marble objects. Radiation Measurements 37(1): 87–94, DOI 10.1016/S1350-4487(02)00088-4. http://dx.doi.org/10.1016/S1350-4487(02)00088-410.1016/S1350-4487(02)00088-4Search in Google Scholar

[25] Spooner NA, 1994. The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2. http://dx.doi.org/10.1016/1350-4487(94)90111-210.1016/1350-4487(94)90111-2Search in Google Scholar

[26] Şen Z, 2008. Solar energy fundamentals and modelling techniques. Springer. London. Search in Google Scholar

[27] Theocaris PS, Liritzis I, Galloway RB, 1997. Dating of two Hellinic Pyramids by a novel application of thermoluminescence. Journal of Archaeological Science 24(5): 399–405, DOI 10.1006/jasc.1996.0124. http://dx.doi.org/10.1006/jasc.1996.012410.1006/jasc.1996.0124Search in Google Scholar

[28] Thomsen KJ, Murray AS, Jain M, Bøtter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002. http://dx.doi.org/10.1016/j.radmeas.2008.06.00210.1016/j.radmeas.2008.06.002Search in Google Scholar

[29] Tsukamoto S, Nagashima K, Murray AS, Tada R, 2011. Variations in OSL components from quartz from Japan sea sediments and the possibility of reconstructing provenance. Quaternary International 234(1–2): 182–189, DOI 10.1016/j.quaint.2010.09.003. http://dx.doi.org/10.1016/j.quaint.2010.09.00310.1016/j.quaint.2010.09.003Search in Google Scholar

[30] Vafiadou A, Murray AS, Liritzis I, 2007. Optically stimulated luminescence (OSL) dating investigations of rock and underlying soil from three case studies. Journal of Archaeological Science 34(10): 1659–1669, DOI 10.1016/j.jas.2006.12.004. http://dx.doi.org/10.1016/j.jas.2006.12.00410.1016/j.jas.2006.12.004Search in Google Scholar

[31] Wallinga J, Murray AS, Duller GAT, 2000. Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating. Radiation Measurements 32(5–6): 691–695, DOI 10.1016/S1350-4487(00)00127-X. http://dx.doi.org/10.1016/S1350-4487(00)00127-X10.1016/S1350-4487(00)00127-XSearch in Google Scholar

[32] Wallinga J, Bos AJJ, Dorenbos P, Murray AS, Schokker J, 2007. A test case for anomalous fading correction in IRSL dating. Quaternary Geochronology 2(1–4), 216–221, DOI 10.1016/j.quageo.2006.05.014 http://dx.doi.org/10.1016/j.quageo.2006.05.01410.1016/j.quageo.2006.05.014Search in Google Scholar

eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other