Open Access

Infrared radiofluorescence (IR-RF) dating of middle pleistocene fluvial archives of the Heidelberg Basin (Southwest Germany)


Cite

[1] Aitken MJ, 1985. Thermoluminescence dating. London, UK Academic Press: 359pp. Search in Google Scholar

[2] Aitken MJ, 1998. Introduction to Optical Dating. Oxford, Oxford University Press: 280pp. Search in Google Scholar

[3] Arnold LJ, Bailey RM and Tucker GE, 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2(1–4): 162–167, DOI 10.1016/j.quageo.2006.05.003. http://dx.doi.org/10.1016/j.quageo.2006.05.00310.1016/j.quageo.2006.05.003Search in Google Scholar

[4] Bartz J, 1974. Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies JH and Fuchs K, eds., Approaches to Taphrogenesis vol. 8. Inter-Union-Commission on Geodynamics Scientific Report, Stuttgart, Schweitzerbart: 78–87. Search in Google Scholar

[5] Bittmann F and Müller H, 1996. The Kärlich Interglacial site and its correlation with the Bilshausen sequence. In: Turner C, ed., The early middle Pleistocene in Europe. Balkema: 187–193. 10.1201/9781003077879-12Search in Google Scholar

[6] Blum MD and Tornqvist TE, 2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47(Suppl. 1): 2–48, DOI 10.1046/j.1365-3091.2000.00008.x. http://dx.doi.org/10.1046/j.1365-3091.2000.00008.x10.1046/j.1365-3091.2000.00008.xSearch in Google Scholar

[7] Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Matenco L, Bada G, Garcia-Castellanos D, Hardebol N, De’zes P and Sokoutis D, 2005. Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quaternary Science Reviews 24(3–4): 241–304, DOI 10.1016/j.quascirev.2004.06.015. http://dx.doi.org/10.1016/j.quascirev.2004.06.01510.1016/j.quascirev.2004.06.015Search in Google Scholar

[8] Ellwanger D, Gabriel G, Hoselmann C, Lämmermann-Barthel J and Weidenfeller M, 2005. The Heidelberg drilling project (Upper Rhine Graben, Germany). Quaternaire 16: 191–199. 10.4000/quaternaire.406Search in Google Scholar

[9] Ellwanger D, Gabriel G, Simon T, Wielandt-Schuster U, Greiling RO, Hagedorn EM, Hahne J and Heinz J, 2008. Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 316–337. 10.3285/eg.57.3-4.3Search in Google Scholar

[10] Erfurt G, Krbetschek MR, Trautmann TW, Stolz W, 2000. Radioluminescence (RL) behaviour of Al2O3:C-potential for dosimetric applications. Radiation Measurements 32(5–6): 735–739, DOI 10.1016/S1350-4487(00)00052-4. http://dx.doi.org/10.1016/S1350-4487(00)00052-410.1016/S1350-4487(00)00052-4Search in Google Scholar

[11] Erfurt G, 2003. Infrared luminescence of Pb+ centres in potassium-rich feldspar. Physica status solidi (a) 200(2): 429–438. http://dx.doi.org/10.1002/pssa.20030670010.1002/pssa.200306700Search in Google Scholar

[12] Erfurt G and Krbetschek MR, 2003a. IRSAR — A single-aliquot regenerative-dose dating pro-tocol applied to the infrared radiofluorescence (IR-RF) of coarse-grain K feldspar. Ancient TL 21: 21–28. Search in Google Scholar

[13] Erfurt G and Krbetschek MR, 2003b. Studies on the physics of the infrared radioluminescence of potassic feldspar and on the methodology of its application to sediment dating. Radiation Measurements 37(4–5): 505–510, DOI 10.1016/S1350-4487(03)00058-1. http://dx.doi.org/10.1016/S1350-4487(03)00058-110.1016/S1350-4487(03)00058-1Search in Google Scholar

[14] Erfurt G, Krbetschek MR, Bortolot VJ and Preusser F, 2003. A fully automated multi-spectral radioluminescence reading system for geochronometry and dosimetry. Nuclear Instruments and Methods in Physics Research Section B 207(4): 487–499, DOI 10.1016/S0168-583X(03)01121-2. http://dx.doi.org/10.1016/S0168-583X(03)01121-210.1016/S0168-583X(03)01121-2Search in Google Scholar

[15] Fiebig M, Buiter SJH and Ellwanger D, 2004. Pleistocene glaciations of South Germany. In: Rose J (ed.), Developments in Quaternary Science 2, Amsterdam, Elsevier: 147–154. 10.1016/S1571-0866(04)80065-4Search in Google Scholar

[16] Gabriel G, Ellwanger D, Hoselmann C and Weidenfeller M, 2008. The Heidelberg Basin Drilling Project. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 253–260. 10.3285/eg.57.3-4.00Search in Google Scholar

[17] Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia: Part 1, experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x. http://dx.doi.org/10.1111/j.1475-4754.1999.tb00987.x10.1111/j.1475-4754.1999.tb00987.xSearch in Google Scholar

[18] Hagedorn EM and Boenigk W, 2008. The Pliocene and Quaternary sedimentary and fluvial history in the Upper Rhine Graben based on heavy mineral analyses. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 21–32. 10.1017/S001677460002401XSearch in Google Scholar

[19] Haimberger R, Hoppe A and Schäfer A, 2005. High-resolution seismic survey on the Rhine River in the northern Upper Rhine Graben. International Journal of Earth Sciences 94(4): 657–668, DOI 10.1007/s00531-005-0514-z. http://dx.doi.org/10.1007/s00531-005-0514-z10.1007/s00531-005-0514-zSearch in Google Scholar

[20] Hoselmann C, 2008. The Pliocene and Pleistocene fluvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany). Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 286–315. 10.3285/eg.57.3-4.2Search in Google Scholar

[21] Huntley DJ and Baril MR, 1997. The K content of the K-feldspars being measured in optical dating or thermoluminescence dating. Ancient TL 15(1): 11–13. Search in Google Scholar

[22] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/cjes-38-7-1093. http://dx.doi.org/10.1139/cjes-38-7-109310.1139/e01-013Search in Google Scholar

[23] Jain M, Murray A and Bøtter-Jensen L, 2004. Optically stimulated luminescence dating: how significant is incomplete bleaching in fluvial environments. Quaternaire 15: 143–157. http://dx.doi.org/10.3406/quate.2004.176210.3406/quate.2004.1762Search in Google Scholar

[24] Kars RH, Wallinga J and Cohen KM, 2008. A new approach towards anomalous fading correction for feldspar IRSL dating — tests on samples in field saturation. Radiation Measurements 43(2–6): 786–790, DOI 10.1016/j.radmeas.2008.01.021. http://dx.doi.org/10.1016/j.radmeas.2008.01.02110.1016/j.radmeas.2008.01.021Search in Google Scholar

[25] Kemna HA, 2005. Pliocene and Lower Pleistocene Stratigraphy in the Lower Rhine Embayment, Germany. Kölner Forum für Geologie und Paläontologie 14: 1–121. Search in Google Scholar

[26] Knipping M, 2008. Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 51–66. 10.1017/S0016774600024045Search in Google Scholar

[27] Krbetschek MR, Trautmann T, Dietrich A and Stolz W, 2000. Radioluminescence dating of sediments: Methodological aspects. Radiation Measurements 32(5–6): 493–498, DOI 10.1016/S1350-4487(00)00122-0. http://dx.doi.org/10.1016/S1350-4487(00)00122-010.1016/S1350-4487(00)00122-0Search in Google Scholar

[28] Krbetschek MR, Degering D und Alexowsky W, 2008. Infrarot-Radiofluoreszenz-Alter (IR-RF) unter-saalezeitlicher Sedimente Mittel- und Ostdeutschlands. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 159(1): 133–140. http://dx.doi.org/10.1127/1860-1804/2008/0159-013310.1127/1860-1804/2008/0159-0133Search in Google Scholar

[29] Lauer T, Frechen M, Hoselmann C and Tsukamoto S, 2010. Fluvial aggradation phases in the Upper Rhine Graben — New insights by quartz OSL dating. Proceedings of Geologists’ Association 121: 154–161, DOI 10.1016/j.pgeola.2009.10.006. http://dx.doi.org/10.1016/j.pgeola.2009.10.00610.1016/j.pgeola.2009.10.006Search in Google Scholar

[30] Lepper K and McKeever SWS, 2002. An objective methodology for dose distribution analysis. Radiation Protection Dosimetry. Solid State Dosimetry 101: 349–352. 10.1093/oxfordjournals.rpd.a005999Search in Google Scholar

[31] Litt T, 2007. Introduction: Climate, Vegetation and Mammalian Faunas in Europe during Middle Pleistocene Interglacials (MIS 7,9,11). In: Sirocko F, Claussen M, Sánchez Goni MF and Litt T, eds., The climate of past interglacials. Elsevier: 352–358. 10.1016/S1571-0866(07)80048-0Search in Google Scholar

[32] Litt T, Behre KE, Meyer KD, Stephan HJ and Wansa S, 2007. Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes / Stratigraphical Terms for the Quaternary of the North German Glaciation Area. In: Litt T, ed., Stratigraphie von Deutschland, special issue in Eiszeitalter und Gegenwart 56(1/2):7–66. 10.3285/eg.56.1-2.02Search in Google Scholar

[33] Miall AD, 1996. The Geology of Fluvial deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin, Springer: 583 pp. Search in Google Scholar

[34] Miallier D, Sanzelle S and Fain J, 1983. The use of flotation technique to separate quartz from feldspar. Ancient TL 1: 5–6. Search in Google Scholar

[35] Peters G and Van Balen RT, 2007. Tectonic geomorphology of the northern Upper Rhine Graben, Germany. Global and Planetary Change 58(1–4): 310–334, DOI 10.1016/j.gloplacha.2006.11.041. http://dx.doi.org/10.1016/j.gloplacha.2006.11.04110.1016/j.gloplacha.2006.11.041Search in Google Scholar

[36] Preusser F, 2008. Characterisation and evolution of the River Rhine system. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87 (1): 7–19. 10.1017/S0016774600024008Search in Google Scholar

[37] Rähle W, 2005. Eine mittelpleistozäne Molluskenfauna aus dem Oberen Zwischenhorizont des nördlichen Oberrheingrabens (Bohrung Mannheim-Lindenhof). Mainzer Geowissenschaftliche Mitteilungen 33: 9–20. Search in Google Scholar

[38] Rodnight H, 2008. How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL 26: 3–10. Search in Google Scholar

[39] Roe HM, 1999. Late Middle Pleistocene sea-level change in the southern North Sea: the record from eastern Essex, UK. Quaternary International 55(1): 115–128, DOI 10.1016/S1040-6182(98)00032-9. http://dx.doi.org/10.1016/S1040-6182(98)00032-910.1016/S1040-6182(98)00032-9Search in Google Scholar

[40] Rolf C, Hambach U and Weidenfeller M, 2008. Rock and palaeomagnetic evidence for the Plio-Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen-Parkinsel). Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 39–48. 10.1017/S0016774600024033Search in Google Scholar

[41] Templer RH, 1986. The localised transition model of anomalous fading. Radiation Protection Dosimetry 17: 493–497. 10.1093/oxfordjournals.rpd.a079867Search in Google Scholar

[42] Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 1998. Investigations of Feldspar Radioluminescence: Potential for a new Dating Technique. Radiation Measurements 29(3–4): 421–425, DOI 10.1016/S1350-4487(98)00012-2. http://dx.doi.org/10.1016/S1350-4487(98)00012-210.1016/S1350-4487(98)00012-2Search in Google Scholar

[43] Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 1999a. Radioluminescence dating: a new tool for Quaternary geology and archaeology. Naturwissenschaften 86: 441–444. http://dx.doi.org/10.1007/s00114005064910.1007/s001140050649Search in Google Scholar

[44] Trautmann T, Krbetschek, MR, Dietrich A and Stolz W, 1999b. Feldspar radioluminescence: a new dating method and ist physical background. Journal of Luminescence 85(1–3): 45–58, DOI 10.1016/S0022-2313(99)00152-0. http://dx.doi.org/10.1016/S0022-2313(99)00152-010.1016/S0022-2313(99)00152-0Search in Google Scholar

[45] Trautmann T, Krbetschek MR, Dietrich A and Stolz W, 2000. The basic principle of radioluminescence dating and a localized transition model. Radiation Measurements 32(5–6): 487–492, DOI 10.1016/S1350-4487(00)00119-0. http://dx.doi.org/10.1016/S1350-4487(00)00119-010.1016/S1350-4487(00)00119-0Search in Google Scholar

[46] Van den Boogard C, Van den Boogard P and Schmincke HU, 1989. Quartärgeologisch-tephrostratigraphische Neuaufnahme und Interpretation des Pleistozänprofils Kärlich. Eiszeitalter und Gegenwart 39: 62–86. 10.3285/eg.39.1.08Search in Google Scholar

[47] Vasil’chenko V, Molod’kov A and Jaek I, 2005. Tunneling processes and anomalous fading in natural feldspars extracted from quaternary deposits. Journal of Applied Spectroscopy 72(2): 218–223, DOI 10.1007/s10812-005-0058-9. http://dx.doi.org/10.1007/s10812-005-0058-910.1007/s10812-005-0058-9Search in Google Scholar

[48] Wallinga J, 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31(4): 303–322, DOI 10.1111/j.1502-3885.2002.tb01076.x. http://dx.doi.org/10.1080/03009480232094253610.1080/030094802320942536Search in Google Scholar

[49] Wedel J, 2008. Pleistozäne Mollusken aus Forschungsbohrungen des Heidelberger Beckens. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 382–402. Search in Google Scholar

[50] Weidenfeller and Kärcher, 2008. Tectonic influence on fluvial preservation: aspects of the architecture of Middle and Late Pleistocene sediments in the northern Upper Rhine Graben, Germany. Netherlands Journal of Geosciences — Geologie en Mijnbouw 87(1): 33–40. 10.1017/S0016774600024021Search in Google Scholar

[51] Weidenfeller M and Knipping M, 2008. Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57: 270–285. 10.3285/eg.57.3-4.1Search in Google Scholar

[52] Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0. http://dx.doi.org/10.1038/245143a010.1038/245143a0Search in Google Scholar

[53] Ziegler PA and Fraefel M, 2009. Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben. Swiss Journal of Geosciences 102(1): 57–75, DOI 10.1007/s00015-009-1306-4. http://dx.doi.org/10.1007/s00015-009-1306-410.1007/s00015-009-1306-4Search in Google Scholar

eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other