Open Access

Hydrothermal Conversion of Fly Ash into Monomineralic Zeolite Synthesis for Biodiesel Production


Cite

https://nepis.epa.gov, accessed on January 7, 2024 Search in Google Scholar

Murayama N., Yamamoto H., Shibata J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int J Miner Process 2002:64:1–17. https://doi.org/10.1016/S0301-7516(01)00046-1 Search in Google Scholar

Lestari W. W., Hasanah D. N., Putra R., Mukti R. R., Nugrahaningtyas K. D. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition. IOP Conf Ser Mater Sci Eng 2018:349:012068. https://doi.org/10.1088/1757-899X/349/1/012068 Search in Google Scholar

Sandoval M. V., Henao J. A., Ríos C. A., Williams C. D., Apperley D. C. Synthesis and characterization of zeotype ANA framework by hydrothermal reaction of natural clinker. Fuel 2009:88(2):272–281. https://doi.org/10.1016/j.fuel.2008.08.017 Search in Google Scholar

Novembre D., Gimeno D. Synthesis and characterization of analcime (ANA) zeolite using a kaolinitic rock. Sci Rep 2021:11:13373. https://doi.org/10.1038/s41598-021-92862-0 Search in Google Scholar

Rasmussen S. T., Groh C. L., O’Brien W. J. Stress induced phase transformation of a cesium stabilized leucite porcelain and associated properties. Dent Mater 1998:14(3):202–11. https://doi.org/10.1016/S0109-5641(98)00033-5 Search in Google Scholar

Azizi S. N., Ehsani Tilami S. Cu-modified analcime as a catalyst for oxidation of benzyl alcohol: Experimental and theoretical. Microporous Mesoporous Materials 2013:167:89–93. https://doi.org/10.1016/j.micromeso.2012.03.034 Search in Google Scholar

Shah R. K. Facile synthesis of novel NiS-Analcime composite for the efficient photocatalytic degradation of Eriochrome Black T dye. Int J Environ Anal Chem 2020:102(19):8331–8345. https://doi.org/10.1080/03067319.2020.1849652 Search in Google Scholar

Dyer A., Tangkawanit S., Rangsriwatananon K. Exchange diffusion of Cu2+, Ni2+, Pb2+ and Zn2+ into analcime synthesized from perlite. Microporous Mesoporous Materials 2004:75(3):273–279. https://doi.org/10.1016/j.micromeso.2004.07.007 Search in Google Scholar

Ehsani Tilami S., Naser Azizi S. Methionine templated analcime for enhancing heavy metal adsorption. Science Asia 2017:43(1):42–46. https://doi.org/10.2306/scienceasia1513-1874.2017.43.042 Search in Google Scholar

Atta A. Y., Jibril B. Y., Aderemi B. O., Adefila S. S. Preparation of analcime from local kaolin and rice husk ash. Appl Clay Sci 2012:61:8–13. https://doi.org/10.1016/j.clay.2012.02.018 Search in Google Scholar

Yuan J., Yang J., Ma H., Liu C., Zhao C. Hydrothermal synthesis of analcime and hydroxycancrinite from K-feldspar in Na2 SiO3 solution: characterization and reaction mechanism. RSC Adv 2016:59:54503–54509. https://doi.org/10.1039/C6RA08080D Search in Google Scholar

http://www.iza-structure.org/databases/, accessed on January 7, 2024 Search in Google Scholar

Maldonado M., Oleksiak M. D., Chinta S., Rimer J. D. Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites. J Am Chem Soc 2013:135(7):2641–2652. https://doi.org/10.1021/ja3105939 Search in Google Scholar

Sobuś N., Czekaj I., Diichuk V., Kobasa I. M. Characteristics of the structure of natural zeolites and their potential application in catalysis and adsorption processes. Tech Trans 2020:117:1–20. https://doi.org/10.37705/TechTrans/e2020043 Search in Google Scholar

Đặng T-H., Nguyễn X-H., Chou C-L., Chen B-H. Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production. Renew Energy 2021:174:347–358. https://doi.org/10.1016/j.renene.2021.04.068 Search in Google Scholar

Simbi I., Osagie Aigbe U., Oyekanmi Oyekola O., Adelaja Osibote O. Chemical and quality performance of biodiesel and petrol blends. Energy Convers Manag X 2022:15:100256. https://doi.org/10.1016/j.ecmx.2022.100256 Search in Google Scholar

Sakthivel R., Ramesh K., Purnachandran R., Mohamed Shameer P. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew Sustain Energy Rev 2018:82(P3):2970–2992. https://doi.org/10.1016/j.rser.2017.10.037 Search in Google Scholar

Rizwanul Fattah I. M., Ong H. C., Mahlia T. M. I., Mofijur M., Silitonga A. S., Rahman S. M. A., Ahmad A. State of the Art of Catalysts for Biodiesel Production. Front Energy Res 2020:8. https://doi.org/10.3389/fenrg.2020.00101 Search in Google Scholar

Aleman-Ramirez J. L., Okoye P. U., Torres-Arellano S., Paraguay-Delgado F., Mejía-López M., Moreira J., Sebastian P. J. Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production. Fuel 2022:324(PB):124601. https://doi.org/10.1016/j.fuel.2022.124601 Search in Google Scholar

Doyle A. M., Albayati T. M., Abbas A. S., Alismaeel Z. T. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew Energy 2016:97:19–23. https://doi.org/10.1016/j.renene.2016.05.067 Search in Google Scholar

Wdowin M., Franus M., Panek R., Badura L., Franus W. The conversion technology of fly ash into zeolites. Clean Technol Environ Policy 2014:16:1217–1223. https://doi.org/10.1007/s10098-014-0719-6 Search in Google Scholar

Panek R., Madej J., Bandura L., Słowik G. Recycling of Waste Solution after Hydrothermal Conversion of Fly Ash on a Semi-Technical Scale for Zeolite Synthesis. Materials (Basel) 2021:14(6):1413. https://doi.org/10.3390/ma14061413 Search in Google Scholar

Grabias-Blicharz E., Panek R., Franus M., Franus W. Mechanochemically Assisted Coal Fly Ash Conversion into Zeolite. Materials (Basel) 2022:15(20):7174. https://doi.org/10.3390/ma15207174 Search in Google Scholar

Jamil T. S., Youssef H. F. Microwave synthesis of zeolites from Egyptian kaolin: Evaluation of heavy metals removal. Sep Sci Technol 2016:51(18):2876–2886. https://doi.org/10.1080/01496395.2016.1229337 Search in Google Scholar

Hegazy E. Z., El Maksod I. H. A., El Enin R. M. M. A. Preparation and characterization of Ti and V modified analcime from local kaolin. Appl Clay Sci 2010:49(3):149–155. https://doi.org/10.1016/j.clay.2010.04.019 Search in Google Scholar

Bandura L., Panek R., Madej J., Franus W. Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel 2021:283:119173. https://doi.org/10.1016/j.fuel.2020.119173 Search in Google Scholar

Zinatlou Ajabshir S., Gucuyener C., Vivacqua V., Gobby D., Stitt H., Barletta D., et al. Flow behaviour of zeolite powders at high process temperatures. Powder Technol 2022:409:117818. https://doi.org/10.1016/j.powtec.2022.117818 Search in Google Scholar

Zhang X., Tang D., Zhang M., Yang R. Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals. Powder Technol 2013:235:322–8. https://doi.org/10.1016/j.powtec.2012.10.046 Search in Google Scholar

Purandaradas A., Silambarasan T., Murugan K., Babujanarthanam R., Gandhi A. D., Dhandapani K. V., Anbumani D., Kavitha P. Development and quantification of biodiesel production from chicken feather meal as a cost-effective feedstock by using green technology. Biochem Biophys Reports 2018:14:133–139. https://doi.org/10.1016/j.bbrep.2018.04.012 Search in Google Scholar

Primo A., Garcia H. Zeolites as catalysts in oil refining. Chem Soc Rev 2014:22:7548–7561. https://doi.org/10.1039/C3CS60394F Search in Google Scholar

Blanco C., González F., Pesquera C., Benito I., Mendioroz S., Pajares J. A. Differences Between One Aluminic Palygorskite and Another Magnesic by Infrared Spectroscopy. Spectrosc Lett 1989:22(6):659–673. https://doi.org/10.1080/00387018908053926 Search in Google Scholar

Kwakye-Awuah B., Radecka I., Kenward M. A., Williams C. D. Production of silver-doped analcime by isomorphous substitution technique. J Chem Technol Biotechnol 2008:83(9):1255–1260. https://doi.org/10.1002/jctb.1938 Search in Google Scholar

Liu X., Wang C., Zhou J., Liu C., Liu Z., Shi J., Wang Y., Teng J., Xie Z. Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chem Soc Rev 2022:51(19):8174–8200. https://doi.org/10.1039/D2CS00079B Search in Google Scholar

Cuautli C., Romero-Ibarra I., Vazquez-Arenas J., Galvan M. Determination of active sites on Na2SiO3 and Li2SiO3 catalysts for methanol dissociation and methoxide stabilization concerning biodiesel production. Fuel 2021:298:120840. https://doi.org/10.1016/j.fuel.2021.120840 Search in Google Scholar

Kouzu M., Kasuno T., Tajika M., Sugimoto Y., Yamanaka S., Hidaka J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 2008:87(12):2798–28806. https://doi.org/10.1016/j.fuel.2007.10.019 Search in Google Scholar

Al-Jammal N., Al-Hamamre Z., Alnaief M. Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil. Renew Energy 2016:93:449–459. https://doi.org/10.1016/j.renene.2016.03.018 Search in Google Scholar

Fereidooni L., Abbaspourrad A., Enayati M. Electrolytic transesterification of waste frying oil using Na+/zeolite–chitosan biocomposite for biodiesel production. Waste Manag 2021:127:48–62. https://doi.org/10.1016/j.wasman.2021.04.020 Search in Google Scholar

Enweremadu C., Samuel O., Rutto H. Experimental Studies and Theoretical Modelling of Diesel Engine Running on Biodiesels from South African Sunflower and Canola Oils Environ Clim Technol 2022:26:630–647. https://doi.org/10.2478/rtuect-2022-0048 Search in Google Scholar

Kiprono J, Rutto H, Seodigeng T. Production of Biodiesel Using Phosphate Rock as a Heterogeneous Catalyst. An Optimized Process Using Surface Response Methodology Environ Clim Technol 2022:26:822–835. https://doi.org/10.2478/rtuect-2022-0062 Search in Google Scholar

Rashid A.B, Kader M.F. Performance Analysis of An Automated Biodiesel Processor Environ Clim Technol 2022:26:84–97. https://doi.org/10.2478/rtuect-2022-0008 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other