Open Access

Comprehensive Literature Review on Valuable Compounds and Extraction Technologies: The Eastern Baltic Sea Seaweeds

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART I: The Green Deal Umbrella for Environmental and Climate Technologies

Cite

[1] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067Search in Google Scholar

[2] Zihare L., Gusca J., Spalvins K., Blumberga D. Priorities Determination of Using Bioresources. Case Study of Heracleum sosnowskyi. Environmental and Climate Technologies 2019:23(1):242–256. https://doi.org/10.2478/rtuect-2019-001610.2478/rtuect-2019-0016Search in Google Scholar

[3] Blumberga D., et al. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-010210.2478/rtuect-2019-0102Search in Google Scholar

[4] Ree R., Zeeland A. IEA Bioenergy: Task 42 Biorefining. Netherlands: IEA Bioenergy, 2014.Search in Google Scholar

[5] Food and Agriculture Organization of the United Nations. Fishery and Aquaculture Statistics. Rome: FAO, 2011.Search in Google Scholar

[6] NetAlgae. Seaweed Industry in Europe. 2012:11 [Online]. [Accessed 15.04.2020]. Available: www.netalgae.euSearch in Google Scholar

[7] Rioux L.-E., Turgeon S. L., Beaulieu M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers 2007:69(3):530–537. https://doi.org/10.1016/j.carbpol.2007.01.00910.1016/j.carbpol.2007.01.009Search in Google Scholar

[8] Li Y., et al. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Bioresource Technology 2016:214:144–149. https://doi.org/10.1016/j.biortech.2016.04.09010.1016/j.biortech.2016.04.090Search in Google Scholar

[9] Maehre H. K., et al. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Journal of the Science of Food and Agriculture 2014:94(15):3281–3290. https://doi.org/10.1002/jsfa.668110.1002/jsfa.6681Search in Google Scholar

[10] Rupe P., Ruperez P. Mineral content of edible marine seaweeds. Food Chemistry 2002:79(1):23–26. https://doi.org/10.1016/S0308-8146(02)00171-110.1016/S0308-8146(02)00171-1Search in Google Scholar

[11] Wijayanta A. T., Goto M., Kamiya N. Great potency of seaweed waste biomass from the carrageenan industry for bioethanol production by peracetic acid–ionic liquid pretreatment. Biomass and Bioenergy 2015:81:63–69. https://doi.org/10.1016/j.biombioe.2015.05.02310.1016/j.biombioe.2015.05.023Search in Google Scholar

[12] Taylor S. Marine Medicinal Foods, Volume 64, 1st ed. Implications and Applications, Macro and Microalgae. Elsevier, Academic Press 2011.Search in Google Scholar

[13] Senthilkumar N., et al. Further studies and biological activities of macromolecular protein R-Phycoerythrin from Portieria hornemannii. International Journal of Biological Macromolecules 2013:62:107–116. https://doi.org/10.1016/j.ijbiomac.2013.08.00410.1016/j.ijbiomac.2013.08.00423962717Search in Google Scholar

[14] Dumay J., et al. Phycoerythrins: Valuable proteinic pigments in red seaweeds. Advances in Botanical Research 2014:71:321–343. https://doi.org/10.1016/B978-0-12-408062-1.00011-110.1016/B978-0-12-408062-1.00011-1Search in Google Scholar

[15] Tiwari B. K., Ed. Seaweed Sustainability, 1st ed. Food and Non-Food Applications. Elsevier, Academic Press 2015.10.1016/B978-0-12-418697-2.00001-5Search in Google Scholar

[16] Rajauria G. Seaweeds: A sustainable feed source for livestock and aquaculture. Seaweed Sustainability: Food and Non-Food Applications 2015:389–420. https://doi.org/10.1016/B978-0-12-418697-2.00015-510.1016/B978-0-12-418697-2.00015-5Search in Google Scholar

[17] Bikker P., et al. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. Journal of Applied Phycology 2016:28:3511–3525. https://doi.org/10.1007/s10811-016-0842-310.1007/s10811-016-0842-3515502128035175Search in Google Scholar

[18] Venkatesan J., Anil S., Kim S. K. Eds. Seaweed Polysaccharides, 1st ed. Isolation, Biological and Biomedical Applications. Elsevier, 2017.10.1016/B978-0-12-809816-5.00001-3Search in Google Scholar

[19] Holdt S. L., Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology 2011:23(3):543–597. https://doi.org/10.1007/s10811-010-9632-510.1007/s10811-010-9632-5Search in Google Scholar

[20] Spurr H. I. Extraction, separation and purification of polyphenols, polysaccharides and pigments from British seaweed for high-value applications. Thesis (PhD),White Rose, 2014.Search in Google Scholar

[21] Fleurence J., Morançais M., Dumay J. Seaweed proteins. In Proteins in Food Processing (Second Edition). Woodhead Publishing Series in Food Science, Technology and Nutrition 2018, 245–262.10.1016/B978-0-08-100722-8.00010-3Search in Google Scholar

[22] Burtin P. Nutritional Value of Seaweeds. Electronic Journal of Environmental, Agricultural and Food Chemistry 2003:2(4):1579–4377.Search in Google Scholar

[23] Werlinger C., Alveal K., Romo H. Biología marina y oceanografía: conceptos y procesos. (Marine biology and oceanography: Concepts and processes.) Chile: University of Consepcion, 2009 (in Spanish)Search in Google Scholar

[24] Bonanno G., Orlando-Bonaca M. Chemical elements in Mediterranean macroalgae. A review. Ecotoxicology and Environmental Safety 2018:148:44–71. https://doi.org/10.1016/j.ecoenv.2017.10.01310.1016/j.ecoenv.2017.10.01329031118Search in Google Scholar

[25] Leliaert F., et al. Phylogeny and Molecular Evolution of the Green Algae. Critical Reviews in Plant Sciences 2012:31(1):1–46. https://doi.org/10.1080/07352689.2011.61570510.1080/07352689.2011.615705Search in Google Scholar

[26] Nunes N., et al. Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira Archipelago. Journal of Applied Phycology 2017:29:2427–2437. https://doi.org/10.1007/s10811-017-1074-x10.1007/s10811-017-1074-xSearch in Google Scholar

[27] Milledge J. J., Nielsen B. V., Bailey D. High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Reviews in Environmental Science and Biotechnology 2016:15:67–88. https://doi.org/10.1007/s11157-015-9381-710.1007/s11157-015-9381-7Search in Google Scholar

[28] Kersen P., Paalme T., Pajusalu L., Martin G. Biotechnological applications of the red alga Furcellaria lumbricalis and its cultivation potential in the Baltic Sea. Botanica Marina 2017:60(2):207–218. https://doi.org/10.1515/bot-2016-006210.1515/bot-2016-0062Search in Google Scholar

[29] Sánchez-Machado D. I., et al. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chemistry 2004:85(3):439–444. https://doi.org/10.1016/j.foodchem.2003.08.00110.1016/j.foodchem.2003.08.001Search in Google Scholar

[30] Duan X. J., et al. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry 2006:95(1):37–43. https://doi.org/10.1016/j.foodchem.2004.12.01510.1016/j.foodchem.2004.12.015Search in Google Scholar

[31] Yanik J., et al. Pyrolysis of algal biomass. Journal of Analytical and Applied Pyrolysis 2013:103:134–141. https://doi.org/10.1016/j.jaap.2012.08.01610.1016/j.jaap.2012.08.016Search in Google Scholar

[32] Gomez-Zavaglia A., et al. The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 2019:8(9):406. https://doi.org/10.3390/antiox809040610.3390/antiox8090406Search in Google Scholar

[33] Bergeron C., Carrier D. J., Ramaswamy S. Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing. John Wiley and Sons, Inc., 201210.1002/9780470976692Search in Google Scholar

[34] Meenakshi S., et al. Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast. Global Journal of Pharmacology 2009:3(2):59–66.Search in Google Scholar

[35] Li X., et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Enteromorpha intestinalis. International Journal of Biological Macromolecules 2018:111:319–325. https://doi.org/10.1016/j.ijbiomac.2018.01.01810.1016/j.ijbiomac.2018.01.018Search in Google Scholar

[36] Wright R. T., Boorse D. F. Environmental Science: Toward a Sustainable Future, 12th Edition. Upper Saddle River: Pearson Education Inc., 2014.Search in Google Scholar

[37] Peasura N., Laohakunjit N., Kerdchoechuen O., Wanlapa S. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. International Journal of Biological Macromolecules 2015:81:912–919. https://doi.org/10.1016/j.ijbiomac.2015.09.03010.1016/j.ijbiomac.2015.09.030Search in Google Scholar

[38] Kidgell J. T., Magnusson M., de Nys R., Glasson C. R. K. Ulvan: A systematic review of extraction, composition and function. Algal Research 2019:39:101422. https://doi.org/10.1016/j.algal.2019.10142210.1016/j.algal.2019.101422Search in Google Scholar

[39] Szaniawska A., Normant M. Szaniawska, Normant - 2000 - The biochemical composition of Enteromorpha spp. from the Gulf of Gdańsk coast on the southern Balt. Oceanologia 2000:42(1):19–28.Search in Google Scholar

[40] de Reviers B., Leproux A. Characterization of polysaccharides from Enteromorpha intestinalis (L.) link, chlorophyta. Carbohydrate Polymers 1993:22(4):253–259. https://doi.org/10.1016/0144-8617(93)90128-Q10.1016/0144-8617(93)90128-QSearch in Google Scholar

[41] Tabarsa M., et al. Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. Journal of Medicinal Food 2012:15(2):135–144. https://doi.org/10.1089/jmf.2011.171610.1089/jmf.2011.171622191629Search in Google Scholar

[42] Tabarsa M., You S. G., Dabaghian E. H., Surayot U. Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis 2018:26(2):599–608. https://doi.org/10.1016/j.jfda.2017.07.01610.1016/j.jfda.2017.07.01629567229Search in Google Scholar

[43] Graiff A., Liesner D., Karsten U., Bartsch I. Temperature tolerance of western Baltic Sea Fucus vesiculosus – growth, photosynthesis and survival. Journal of Experimental Marine Biology and Ecology 2015:471:8–16. https://doi.org/10.1016/j.jembe.2015.05.00910.1016/j.jembe.2015.05.009Search in Google Scholar

[44] Tuvikene A. R., Robal M. Valgulised pigmendid Läänemere punavetikast Furcellaria lumbricalis : sisaldus ja eraldamisvõimalused. (Proteinic pigments from Baltic red algae Furcellaria lumbricalis: content and isolation possibilities.) Tallin: Tallin University, 2015. (in Estonian)Search in Google Scholar

[45] Bird C. J., Saunders G. W., McLachlan J. Biology of Furcellaria lumbricalis (Hudson) Lamouroux (Rhodophyta: Gigartinales), a commercial carrageenophyte. Journal of Applied Phycology 1991:3(1):61–82. https://doi.org/10.1007/BF0000392010.1007/BF00003920Search in Google Scholar

[46] Rahimi F., Tabarsa M., Rezaei M. Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. Journal of Applied Phycology 2016:28(5):2979–2990. https://doi.org/10.1007/s10811-016-0824-510.1007/s10811-016-0824-5Search in Google Scholar

[47] Benjama O., Masniyom P. Nutritional composition and physicochemical properties of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern Thailand. Songklanakarin Journal of Science and Technology 2011:33(5):575–583.Search in Google Scholar

[48] Peinado I., Girón J., Koutsidis G., Ames J. M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International 2014:66:36–44. https://doi.org/10.1016/j.foodres.2014.08.03510.1016/j.foodres.2014.08.035Search in Google Scholar

[49] Cherry P., et al. Risks and benefits of consuming edible seaweeds. Nutrition Reviews 2019:77(5):307–329. https://doi.org/10.1093/nutrit/nuy06610.1093/nutrit/nuy066655169030840077Search in Google Scholar

[50] Parjikolaei B. R., et al. Valuable Biomolecules from Nine North Atlantic Red Macroalgae: Amino Acids, Fatty Acids, Carotenoids, Minerals and Metals. Natural Resources 2016:7(4):157–183. https://doi.org/10.4236/nr.2016.7401610.4236/nr.2016.74016Search in Google Scholar

[51] Naseri A., Holdt S. L., Jacobsen C. Biochemical and Nutritional Composition of Industrial Red Seaweed Used in Carrageenan Production. Journal of Aquatic Food Product Technology 2019:28(9):967–973. https://doi.org/10.1080/10498850.2019.166469310.1080/10498850.2019.1664693Search in Google Scholar

[52] Dumay J., Morançais M. Proteins and Pigments. In J. Fleurence and I. Levine (Eds.) Seaweed in Health and Disease Prevention, Elsevier Inc. 2016. https://doi.org/10.1016/B978-0-12-802772-1.00009-910.1016/B978-0-12-802772-1.00009-9Search in Google Scholar

[53] Hermund D. B. Extraction, characterization and application of antioxidants from the Nordic brown alga Fucus vesiculosus. Lyngby: DTU, 2016:312.Search in Google Scholar

[54] Truus K., et al. Analysis of bioactive ingredients in the brown alga Fucus vesiculosus by capillary electrophoresis and neutron activation analysis. Analytical and Bioanalytical Chemistry 2004:379:849–852. https://doi.org/10.1007/s00216-004-2666-210.1007/s00216-004-2666-215221191Search in Google Scholar

[55] Rozentsvet O. A., Nesterov V. N. Lipids and fatty acids from Ulva intestinalis from estuaries of the Caspian basin (elton region). Chemistry of Natural Compounds 2012:48(4):544–547. https://doi.org/10.1007/s10600-012-0305-210.1007/s10600-012-0305-2Search in Google Scholar

[56] Ragonese C., et al. Characterisation of lipid fraction of marine macroalgae by means of chromatography techniques coupled to mass spectrometry. Food Chemistry 2014:145:932–940. https://doi.org/10.1016/j.foodchem.2013.08.13010.1016/j.foodchem.2013.08.13024128566Search in Google Scholar

[57] Jeong G. T., Park D. H. Optimization of lipid extraction from marine green macro-algae as biofuel resources. Korean Journal of Chemical Engineering 2015:32(12):2463–2467. https://doi.org/10.1007/s11814-015-0083-110.1007/s11814-015-0083-1Search in Google Scholar

[58] Alam M., Chakravarti A., Ikawa M. Lipid composition of the brown alga Fucus vesiculosus. Journal of Phycology 1971:7(3):267–268. https://doi.org/10.1111/j.1529-8817.1971.tb0151510.1111/j.0022-3646.1971.00267.xSearch in Google Scholar

[59] Rohani-Ghadikolaei K., Abdulalian E., Ng W. K. Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. Journal of Food Science and Technology 2012:49(6):774–780. https://doi.org/10.1007/s13197-010-0220-010.1007/s13197-010-0220-0355083124293698Search in Google Scholar

[60] Biancarosa I., et al. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed. Journal of the Science of Food and Agriculture 2018:98(5):2035–2042. https://doi.org/10.1002/jsfa.879810.1002/jsfa.8798588813829193189Search in Google Scholar

[61] Yin-Hu W., et al. Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresource technology 2012:112:193–8. https://doi.org/10.1016/j.biortech.2012.02.03710.1016/j.biortech.2012.02.03722424927Search in Google Scholar

[62] Balina K., Romagnoli F., Blumberga D. Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 2017:128:504–511. https://doi.org/10.1016/j.egypro.2017.09.06710.1016/j.egypro.2017.09.067Search in Google Scholar

[63] Zollmann M., et al. Green technology in green macroalgal biorefineries. Phycologia 2019:58(5):516–534. https://doi.org/10.1080/00318884.2019.164051610.1080/00318884.2019.1640516Search in Google Scholar

[64] Peng Y., et al. Chemical composition of seaweeds. In Seaweed Sustainability, Food and Non-Food Applications 2015:79–124. Elsevier Inc., 2015. https://doi.org/10.1016/B978-0-12-418697-2.00005-210.1016/B978-0-12-418697-2.00005-2Search in Google Scholar

[65] Rajauria G., et al. Identification and selection of algae for food, feed, and fuel applications. In Seaweed Sustainability, Food and Non-Food Applications 2015:315–345. https://doi.org/10.1016/B978-0-12-418697-2.00012-X10.1016/B978-0-12-418697-2.00012-XSearch in Google Scholar

[66] Edwards M. Algal Species Selection. 2010.Search in Google Scholar

[67] Kadam S. U., et al. Processing of seaweeds. In Seaweed Sustainability, Food and Non-Food Applications 2015:61–78, Elsevier Inc., 2015.10.1016/B978-0-12-418697-2.00004-0Search in Google Scholar

[68] HELCOM. Pearls of the Baltic Sea. Networking for life: Special nature in a special sea. Helsinki: HELCOM, 2007Search in Google Scholar

[69] Ledesma-Escobar C. A., de Castro M. D. L. Coverage Exploitation of By-Products from the Agrofood Industry. In Green Extraction of Natural Products: Theory and Practice 2014:265–306. https://doi.org/10.1002/9783527676828.ch810.1002/9783527676828.ch8Search in Google Scholar

[70] Cravotto G., Binello A., Orio L. Green extraction techniques. AgroFOOD industry hi-tech 2011:22(6):57–59.Search in Google Scholar

[71] Michalak I., Chojnacka K. Algal extracts: Technology and advances. Engineering in Life Sciences 2014:14(6):581–591. https://doi.org/10.1002/elsc.20140013910.1002/elsc.201400139Search in Google Scholar

[72] Sosa-Hernández J. E., et al. State-of-the-art extraction methodologies for bioactive compounds from algal biome to meet bio-economy challenges and opportunities. Molecules 2018:23(11). https://doi.org/10.3390/molecules2311295310.3390/molecules23112953627854130424551Search in Google Scholar

[73] Razi Parjikolaei B. et al. Process design and economic evaluation of green extraction methods for recovery of astaxanthin from shrimp waste. Chemical Engineering Research and Design 2017:117:73–82. https://doi.org/10.1016/j.cherd.2016.10.01510.1016/j.cherd.2016.10.015Search in Google Scholar

[74] Grosso C., Valentão P., Ferreres F., Andrade P. B. Alternative and efficient extraction methods for marine-derived compounds. Marine Drugs 2015:13(5):3182–3230. https://doi.org/10.3390/md130531810.3390/md13053182Search in Google Scholar

[75] Azmir J., et al. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 2013:117(4):426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.01410.1016/j.jfoodeng.2013.01.014Search in Google Scholar

[76] Praveen M. A., et al. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends in Food Science and Technology 2019:92:46–64. https://doi.org/10.1016/j.tifs.2019.08.01110.1016/j.tifs.2019.08.011Search in Google Scholar

[77] Rioux L., Turgeon S. L. Seaweed carbohydrates. In Seaweed Sustainability, Food and Non-Food Applications 2015:141–192. https://doi.org/10.1016/B978-0-12-418697-2.00007-610.1016/B978-0-12-418697-2.00007-6Search in Google Scholar

[78] Abdul Khalil H. P. S., et al. A review of extractions of seaweed hydrocolloids: Properties and applications. eExpress Polymer Letters 2018:12(4):296–317. https://doi.org/10.3144/expresspolymlett.2018.2710.3144/expresspolymlett.2018.27Search in Google Scholar

[79] Kazir M., et al. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids 2019:87:194–203. https://doi.org/10.1016/j.foodhyd.2018.07.04710.1016/j.foodhyd.2018.07.047Search in Google Scholar

[80] Bleakley S., Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017:6(5):33. https://doi.org/10.3390/foods605003310.3390/foods6050033Search in Google Scholar

[81] Pangestuti R., Kim S. Seaweed proteins, peptides, and amino acids. In Seaweed Sustainability, Food and Non-Food Applications 2015:125–140. https://doi.org/10.1016/B978-0-12-418697-2.00006-410.1016/B978-0-12-418697-2.00006-4Search in Google Scholar

[82] Hamid N., et al. Seaweed minor constituents. In Seaweed Sustainability, Food and Non-Food Applications 2015:193–242. https://doi.org/10.1016/B978-0-12-418697-2.00008-810.1016/B978-0-12-418697-2.00008-8Search in Google Scholar

[83] Chemat F., Cravotto G. Enhancing Extraction Processes in the Food Industry. CRC Press, 2011.Search in Google Scholar

[84] Ivanovs K., Blumberga D. Extraction of fish oil using green extraction methods: A short review. Energy Procedia 2017:128:477–483. https://doi.org/10.1016/j.egypro.2017.09.03310.1016/j.egypro.2017.09.033Search in Google Scholar

[85] Gribovskaya I. V., Gladchenko I. A., Zinenko G. K. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition. Advances in Space Research 1996:18(4–5):93–97. https://doi.org/10.1016/0273-1177(95)00865-C10.1016/0273-1177(95)00865-CSearch in Google Scholar

[86] Ciko A. M., Jokić S., Šubarić D., Jerković I. Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Marine Drugs 2018:16(10):348. https://doi.org/10.3390/md1610034810.3390/md16100348621372930249037Search in Google Scholar

[87] Chemat F., Vian M. A., Cravotto G. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences 2012:13(7):8615–8627. https://doi.org/10.3390/ijms130786110.3390/ijms13078615Search in Google Scholar

[88] Allaf T., Allaf K. Fundamentals of Process-Intensification Strategy for Green Extraction Operations. In Green Extraction of Natural Products: Theory and Practice 2014:145–172. https://doi.org/10.1002/9783527676828.ch510.1002/9783527676828.ch5Search in Google Scholar

[89] Kadam S. U., et al. Extraction of biomolecules from seaweeds. Seaweed Sustainability 2015:243–269. https://doi.org/10.1016/B978-0-12-418697-2.00009-X10.1016/B978-0-12-418697-2.00009-XSearch in Google Scholar

[90] Quitain A. T., Kai T., Sasaki M., Goto M. Supercritical carbon dioxide extraction of fucoxanthin from undaria pinnatifida. Journal of Agricultural and Food Chemistry 2013:61(24):5792–5797. https://doi.org/10.1021/jf400740p10.1021/jf400740p23742680Search in Google Scholar

[91] Heffernan N., et al. Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innovative Food Science and Emerging Technologies 2016:37(B):221–228. https://doi.org/10.1016/j.ifset.2016.06.00410.1016/j.ifset.2016.06.004Search in Google Scholar

[92] Sivagnanam S. P., et al. Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Marine Drugs 2015:13(6):3422–3442. https://doi.org/10.3390/md1306342210.3390/md13063422448363726035021Search in Google Scholar

[93] Michalak I., et al. Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. European Journal of Phycology 2016:51(3):243–252. https://doi.org/10.1080/09670262.2015.113481310.1080/09670262.2015.1134813Search in Google Scholar

[94] Zhang R., et al. A comparative assessment of the activity and structure of phlorotannins from the brown seaweed Carpophyllum flexuosum. Algal Research 2018:29:130–141. https://doi.org/10.1016/j.algal.2017.11.02710.1016/j.algal.2017.11.027Search in Google Scholar

[95] Magnusson M., et al. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Research 2017:23:28–36. https://doi.org/10.1016/j.algal.2017.01.00210.1016/j.algal.2017.01.002Search in Google Scholar

[96] Quitain A. T., Kai T., Sasaki M., Goto M. Microwave-hydrothermal extraction and degradation of fucoidan from supercritical carbon dioxide deoiled Undaria pinnatifida. Industrial and Engineering Chemistry Research 2013:52(23):7940–7946. https://doi.org/10.1021/ie400527b10.1021/ie400527bSearch in Google Scholar

[97] Yuan Y., et al. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydrate Polymers 2018:181:902–910. https://doi.org/10.1016/j.carbpol.2017.11.06110.1016/j.carbpol.2017.11.06129254052Search in Google Scholar

[98] Romarís-Hortas V., Moreda-Piñeiro A., Bermejo-Barrera P. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination. Talanta 2009:79(3):947–952. https://doi.org/10.1016/j.talanta.2009.05.03610.1016/j.talanta.2009.05.03619576469Search in Google Scholar

[99] Wang F., et al. Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis. Ultrasonics Sonochemistry 2015:24:36–42. https://doi.org/10.1016/j.ultsonch.2014.12.00910.1016/j.ultsonch.2014.12.00925542513Search in Google Scholar

[100] Mittal R., et al. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry 2017:38:92–103. https://doi.org/10.1016/j.ultsonch.2017.02.03010.1016/j.ultsonch.2017.02.03028633862Search in Google Scholar

[101] Lee S. H., et al. Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae 2013:28(4):371–378. https://doi.org/10.4490/algae.2013.28.4.37110.4490/algae.2013.28.4.371Search in Google Scholar

[102] Kadam S. U., et al. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Marine Drugs 2015:13(7):4270–4280. https://doi.org/10.3390/md1307427010.3390/md13074270451561626184235Search in Google Scholar

[103] Dang T. T., et al. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology 2017:29(6):3161–3173. https://doi.org/10.1007/s10811-017-1162-y10.1007/s10811-017-1162-ySearch in Google Scholar

[104] Saravana P. S., et al. Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Research 2016:13:246–254. https://doi.org/10.1016/j.algal.2015.12.00410.1016/j.algal.2015.12.004Search in Google Scholar

[105] Plaza M., et al. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International 2010:43(10):2341–2348. https://doi.org/10.1016/j.foodres.2010.07.03610.1016/j.foodres.2010.07.036Search in Google Scholar

[106] Anaëlle T., et al. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013:104:44–52. https://doi.org/10.1016/j.talanta.2012.10.08810.1016/j.talanta.2012.10.08823597887Search in Google Scholar

[107] Sánchez-Camargo A. D. P., et al. Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chemistry 2016:192:67–74. https://doi.org/10.1016/j.foodchem.2015.06.09810.1016/j.foodchem.2015.06.09826304321Search in Google Scholar

[108] Hammed A. M., et al. Enzyme aided extraction of sulfated polysaccharides from Turbinaria turbinata brown seaweed. International Food Research Journal 2017:24(4):1660–1666.Search in Google Scholar

[109] Vo Dinh T., Saravana P. S., Woo H. C., Chun B. S. Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Separation and Purification Technology 2018:196:287–299. https://doi.org/10.1016/j.seppur.2017.06.00910.1016/j.seppur.2017.06.009Search in Google Scholar

[110] Yi J., Dong B., Jin J., Dai X. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis. PLoS ONE 2014:9(7):e102548. https://doi.org/10.1371/journal.pone.010254810.1371/journal.pone.0102548410682825051352Search in Google Scholar

[111] Gereniu C. R. N., Saravana P. S., Chun B. S. Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Separation and Purification Technology 2018:196:309–317. https://doi.org/10.1016/j.seppur.2017.06.05510.1016/j.seppur.2017.06.055Search in Google Scholar

[112] Bozinou E., et al. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019:5(1):8. https://doi.org/10.3390/beverages501000810.3390/beverages5010008Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other