Open Access

Sensitivity Analysis of Packed Bed Phase Change Material Thermal Storage for Domestic Solar Thermal System


Cite

[1] Eurostat. Energy consumption in households - Statistics Explained. 2018 [Online]. [Accessed 05.02.2019]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#cite_note-1Search in Google Scholar

[2] Eurostat. Energy, transport and environment statistics 2019 edition. Luxembourg: Publications Office of the European Union, 2019.Search in Google Scholar

[3] Eurostat. Supply, transformation and consumption of renewables and wastes [Online]. [Accessed 07.01.2020]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_cb_rw&lang=enSearch in Google Scholar

[4] Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23(3):147–158. https://doi.org/10.2478/rtuect-2019-008510.2478/rtuect-2019-0085Search in Google Scholar

[5] Weiss W., Biermayr P. Potential of Solar Thermal in Europe. Brussels: ESTIF, 2008.Search in Google Scholar

[6] Hansen K., Vad Mathiesen B. Comprehensive assessment of the role and potential for solar thermal in future energy systems. Solar Energy 2018:169:144–152. https://doi.org/10.1016/j.solener.2018.04.03910.1016/j.solener.2018.04.039Search in Google Scholar

[7] Zalba B., et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 2003:23(3):251–283. https://doi.org/10.1016/S1359-4311(02)00192-810.1016/S1359-4311(02)00192-8Search in Google Scholar

[8] Salunkhe P. B., Shembekar P. S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews 2012:16(8):5603–5616. https://doi.org/10.1016/j.rser.2012.05.03710.1016/j.rser.2012.05.037Search in Google Scholar

[9] Reddy K. S., Mudgal V., Mallick T. K. Review of latent heat thermal energy storage for improved material stability and effective load management. Journal of Energy Storage 2018:15:205–227. https://doi.org/10.1016/j.est.2017.11.00510.1016/j.est.2017.11.005Search in Google Scholar

[10] Humphries W. R., Marshall G. C. Performance of finned thermal capacitators. Washington: NASA, 1974.Search in Google Scholar

[11] Farid M. M., Kanzawa A. Thermal performance of a heat storage module using pcm’s with different melting temperatures: Mathematical modeling. Journal of Solar Energy Engineering 1989:111(2):152–157. https://doi.org/10.1115/1.326830110.1115/1.3268301Search in Google Scholar

[12] Kousksou T., et al. PCM storage for solar DHW: From an unfulfilled promise to a real benefit. Solar Energy 2011:85(9):2033–2040. https://doi.org/10.1016/j.solener.2011.05.01210.1016/j.solener.2011.05.012Search in Google Scholar

[13] Talmatsky E., Kribus A. PCM storage for solar DHW: An unfulfilled promise? Solar Energy 2008:82(10):861–869. https://doi.org/10.1016/j.solener.2008.04.00310.1016/j.solener.2008.04.003Search in Google Scholar

[14] Bhagat K., Prabhakar M., Saha S. K. Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. Journal of Energy Storage 2018:19:135–144. https://doi.org/10.1016/j.est.2018.06.01410.1016/j.est.2018.06.014Search in Google Scholar

[15] Kenjo L., Inard C., Caccavelli D. Experimental and numerical study of thermal stratification in a mantle tank of a solar domestic hot water system. Applied Thermal Engineering 2007:27(11–12):1986–1995. https://doi.org/10.1016/j.applthermaleng.2006.12.00810.1016/j.applthermaleng.2006.12.008Search in Google Scholar

[16] Liu M., Saman W., Bruno F. Validation of a mathematical model for encapsulated phase change material flat slabs for cooling applications. Applied Thermal Engineering 2011:31(14–15):2340–2347. https://doi.org/10.1016/j.applthermaleng.2011.03.03410.1016/j.applthermaleng.2011.03.034Search in Google Scholar

[17] Bonk S. Methodology for the Assessment of the Hot Water Comfort of Factory Made Systems and Custom Built Systems. Stuttgart: University of Stuttgart (ITW), 2012.Search in Google Scholar

[18] Cabinet of Ministers. Noteikumi par Latvijas būvnormatīvu LBN 221-15. (Regulations for Latvian building norm LBN 221-15.) Ministry of Economics, 2015. (in Latvian)Search in Google Scholar

[19] Dzikevics M., Ansone A., Veidenbergs I. Experimental investigation of flow rate impact on thermal accumulation system with PCM. Energy Procedia 2017:128:386–392. https://doi.org/10.1016/j.egypro.2017.09.04310.1016/j.egypro.2017.09.043Search in Google Scholar

[20] Streicher W., et al. Simulation models of PCM storage units. A report of IEA Solar Heating and Cooling Programme. Task 32: Advanced Storage Concepts for Solar and Low Energy Buildings. Report C5. Graz: Graz University of Technology, 2008.Search in Google Scholar

[21] Schranzhofer H., et al. Validation of a TRNSYS simulation model for PCM energy storage and PCM wall construction elements. Graz: Graz University of Technology, 2006.Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other