Open Access

Study of Integrated Social Vulnerability Index SoVIint of Hilly Region of Uttarakhand, India


Cite

[1] Pranuthi G., Dubey S. K., Tripathi S. K., Chandniha S. K. Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian Journal of Science and Technology 2014:7(10):1573–158210.17485/ijst/2014/v7i10.20Search in Google Scholar

[2] S. Kar. Inclusive Growth in Hilly Regions: Priorities for the Uttarakhand Economy. Institute of Economic Growth, 2007.Search in Google Scholar

[3] Girdhar M. Comparative Geospatial Analysis of Uttarakhand forest fire (India) and Rocky forest fire in US. Presented at 17th ESRI India User Conference, 2017.Search in Google Scholar

[4] Karmaoui A., Balica S. F., Messouli M. Analysis of applicability of flood vulnerability index in Pre-Saharan region, a pilot study to assess flood in Southern Morocco. Natural Hazards and Earth System Sciences, Discuss., 2016:1–24. https://doi.org/10.5194/nhess-2016-9610.5194/nhess-2016-96Search in Google Scholar

[5] Zvingule L, Kalnins S. N, Blumberga D., Gusca J., Bogdanova M., Muizniece I. Improved project management via advancement in evaluation methodology of regional cooperation environmental projects. Environmental and Climate Technologies 2013:11(1):57–67. https://doi.org/10.2478/rtuect-2013-000810.2478/rtuect-2013-0008Search in Google Scholar

[6] Cardona O. D., van Aalst M. K., Birkmann J., Fordham M., McGregor G., Mechler R. Determinants of risk: exposure and vulnerability. Cambridge: Cambridge University Press, 2012.10.1017/CBO9781139177245.005Search in Google Scholar

[7] Fernandez P., Mourato S., Moreira M, Pereira L. A new approach for computing a flood vulnerability index using cluster analysis. Physics and Chemistry of the Earth, Parts A/B/C 2016:94:47–55. https://doi.org/10.1016/j.pce.2016.04.00310.1016/j.pce.2016.04.003Search in Google Scholar

[8] Balica S, Wright N. G. Reducing the complexity of the flood vulnerability index. Environmental Hazards 2010:9(4):321–339. https://doi.org/10.3763/ehaz.2010.004310.3763/ehaz.2010.0043Search in Google Scholar

[9] Balica S. F. Applying the flood vulnerability index as a knowledge base for flood risk assessment. IHE Delft Institute of Water Education, 2012.Search in Google Scholar

[10] Villordon M. B. B. Community-based flood vulnerability index for urban flooding: understanding social vulnerabilities and risks. PhD Thesis. Universite de Nice-Sophia Antipolis, 2015.10.1007/978-981-287-615-7_6Search in Google Scholar

[11] Costa R. N., Machado C. J. S. Social and Environmental Vulnerability in Environmental Education Practiced Within the Federal Licensing in Macae (Rio De Janeiro, Brazil). Ambiente&Sociedade 2017:20(1):127–146. https://doi.org/10.1590/1809-4422asoc20150057v201201710.1590/1809-4422asoc20150057v2012017Search in Google Scholar

[12] Flanagan B. E., Gregory E. W., Hallisey E. J., Heitgerd J. L., Lewis B. A Social Vulnerability Index for Disaster Management. Journal of Homeland Security and Emergency Management. 2011:8(1). https://doi.org/10.2202/1547-7355.179210.2202/1547-7355.1792Search in Google Scholar

[13] Papagiannaki K., Lagouvardos K., Kotroni V., Bezes A. Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Natural Hazards and Earth Systems Science 2015:15(8):1859–1871. https://doi.org/10.5194/nhess-15-1859-201510.5194/nhess-15-1859-2015Search in Google Scholar

[14] Das P. K. The Himalayan Tsunami – Cloudburst , Flash Flood & Death Toll: A Geographical Postmortem. IOSR Journal of Environmental Science, Toxicology and Food Technology 2013:7(2):33–45. https://doi.org/10.9790/2402-072334510.9790/2402-0723345Search in Google Scholar

[15] Pankaj G. Flash Flood and its Mitigation: A Case Study of Almora, Uttarakhand. India Journal of Environmental Hazards 2018:1:1–7.Search in Google Scholar

[16] Dimri A. P., Chevuturi A., Niyogi D., Thayyen R. J., Ray K., Tripathi S. N., Pandey A. K., Mohanty U. C. Cloudbursts in Indian Himalayas: A review. Earth-Science Reviews 2017:168:1–23. https://doi.org/10.1016/j.earscirev.2017.03.00610.1016/j.earscirev.2017.03.006Search in Google Scholar

[17] Pubule J., Kalnbalkite A., Teirumnieka E., Blumberga D. Evaluation of the Environmental Engineering Study Programme at University. Environmental and Climate Technologies 2019:23(2):310–324. https://doi.org/10.2478/rtuect-2019-007010.2478/rtuect-2019-0070Search in Google Scholar

[18] Yucel G., Arun G. Earthquake and Physical and Social Vulnerability Assessment for Settlements: Case Study Avcilar District. Presented at World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.Search in Google Scholar

[19] Rimba A. B., Setiawati M. D., Sambah A. B., Miura F. Physical Flood Vulnerability Mapping Applying Geospatial Techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science 2017:1(1):7. https://doi.org/10.3390/urbansci101000710.3390/urbansci1010007Search in Google Scholar

[20] Briguglio L., Cordina G., Farrugia N., Vella S. Economic Vulnerability and Resilience: Concepts and Measurements. Oxford Development Studies 2009:37(3):229–247. https://doi.org/10.1080/1360081090308989310.1080/13600810903089893Search in Google Scholar

[21] Adger W. N. Indicators of social and economic vulnerability to climate change in Vietnam. CSERGE GEC Working Paper 1998:42.Search in Google Scholar

[22] Punia M., Punia N. Socio-economic vulnerability and sustainable development in context of development vs. conservation debate: A study of Bhagirathi Basin, Uttarakhand, India. International Society for Photogrammetry and Remote Sensing 2014: XL-8/1:77–84. https://doi.org/10.5194/isprsarchives-XL-8-77-201410.5194/isprsarchives-XL-8-77-2014Search in Google Scholar

[23] Ministry T., Government F. Assessment of Environmental Degradation and Impact of Hydroelectric projects during the June 2013 Disaster in Uttarakhand, Part I. Main Report, April, 2014. [Online] Available: https://sandrp.in/2014/04/29/report-of-expert-committee-on-uttarakhand-flood-disaster-role-of-heps-welcome-recommendations/.Search in Google Scholar

[24] Kumar D., Himanshu S. K. Geographical Information Based Evaluation System for Drought. American Journal of Biological and Environmental Statistics 2017:3(4):49–53. https://doi.org/10.11648/j.ajbes.20170304.1210.11648/j.ajbes.20170304.12Search in Google Scholar

[25] Bejar-Pizarro M., Ezquerro P., Herrera G., Tomas R., Guardiola-Albert C., Hernandez J. M. R., Merodo J. A. F., Marchamalo M., Martinez R. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology 2017:547:678–689. https://doi.org/10.1016/j.jhydrol.2017.02.01110.1016/j.jhydrol.2017.02.011Search in Google Scholar

[26] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate change and buildings energy efficiency - The key role of residents. Environmental and Climate Technologies 2016:17(1):30–43. https://doi.org/10.1515/rtuect-2016-000410.1515/rtuect-2016-0004Search in Google Scholar

[27] Fekete A. Assessment of Social Vulnerability for River-Floods. United Nations University – Institute for Environmental and Human Security. Thesis, 2009.Search in Google Scholar

[28] Zurovec O., Cadro S., Sitaula B. Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina. Sustainability, 2017:9(7):1208. https://doi.org/10.3390/su907120810.3390/su9071208Search in Google Scholar

[29] Gebreyes M., Theodory T. Understanding social vulnerability to climate change using a ‘riskscapes’ lens: Case studies from Ethiopia and Tanzania. Erdkunde 2018:72(2):135–150. https://doi.org/10.3112/erdkunde.2018.02.0510.3112/erdkunde.2018.02.05Search in Google Scholar

[30] Yan X., Li X. Evaluation on social vulnerability to natural disasters. The Anthropologist 2016:24(2):570–580. https://doi.org/10.1080/09720073.2016.1189205110.1080/09720073.2016.11892051Search in Google Scholar

[31] Costa H., Dias L., Grosso N., Garrett P. National flood vulnerability index, 2014.Search in Google Scholar

[32] Flanagan B. E., Hallisey E. J., Gregory E. W., Heitgerd J. L., Lewis B. The Social Vulnerability Index and Toolkit. Journal of Homeland Security and Emergency Management 2013:8(1):1547–7355. https://doi.org/10.2202/1547-7355.179210.2202/1547-7355.1792Search in Google Scholar

[33] Frigerio I., Carnelli F., Cabinio M., De Amicis M. Spatiotemporal Pattern of Social Vulnerability in Italy. International Journal of Disaster Risk Science 2018:9(2):249–262. https://doi.org/10.1007/s13753-018-0168-710.1007/s13753-018-0168-7Search in Google Scholar

[34] Wijaya A. P., Hong J. H. Quantitative assessment of social vulnerability for landslide disaster risk reduction using gis approach (case study: Cilacap regency, province of central Java, Indonesia). International Society of Photogrammetry and Remote Sensing 2018:XLII-4:703–709. https://doi.org/10.5194/isprs-archives-XLII-4-703-201810.5194/isprs-archives-XLII-4-703-2018Search in Google Scholar

[35] Chakraborty A., Joshi P. K. Mapping disaster vulnerability in India using analytical hierarchy process. Geomatics, Natural Hazards and Risk 2017:7(1):308–325. https://doi.org/10.1080/19475705.2014.89765610.1080/19475705.2014.897656Search in Google Scholar

[36] Bahinipati C. S. Assessment of vulnerability to cyclones and floods in Odisha, India: a district-level analysis. 2004:107:(12):1997–2007. [Online]. Available: https://www.jstor.org/stable/24216033.Search in Google Scholar

[37] Bhadra A., Bandyopadhyay A., Hodam S., Yimchungru C. Y., Debbarma R. Assessment of Vulnerability of Arunachal Pradesh (India) to Floods. Presented at Int. Water Resource Association Congr., 2015.Search in Google Scholar

[38] Karmeshu N. N., Scatena F. Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. Mausam 2015:66(1):1–6.10.54302/mausam.v66i1.360Search in Google Scholar

[39] Mujumdar P. P. Implications of climate change for sustainable water resources management in India. Physics and Chemistry of the Earth, Parts A/B/C 2008:33(5):354–358. https://doi.org/10.1016/j.pce.2008.02.01410.1016/j.pce.2008.02.014Search in Google Scholar

[40] Aneseyee A. B. The Effect of Climate Change on Water Resources Potential of Omo Gibe Basin, Ethiopia. Environmental Engineering 2013. https://doi.org/10.21203/rs.2.19417/v110.21203/rs.2.19417/v1Search in Google Scholar

[41] Huang Y., Zou Y., Huang G., Maqsood I., Chakma A. Flood vulnerability to climate change through hydrological modeling: A case study of the swift current creek watershed in Western Canada. Water International 2009:30(1):31–39. https://doi.org/10.1080/0250806050869183410.1080/02508060508691834Search in Google Scholar

[42] Gupta S. Modeling district level economic disparities across Uttarakhand, India. IOSR Journal of Humanities and Social Science 2014:19(2):84–90. https://doi.org/10.9790/0837-1925849010.9790/0837-19258490Search in Google Scholar

[43] Yadav A. S., Pandey D. C. Demographic Attributes and Population Dynamics: Study from Himalayan State of Uttarakhand, India. 2017:22(8):50–57.Search in Google Scholar

[44] Uttarakhand Action Plan on Climate Change: Transforming Crisis into Opportunity, 2014. [Online] Available: http://www.forest.uk.gov.in/files/USAPCC/Uttarakhand_SAPCC.pdf.Search in Google Scholar

[45] Chambers S. Uttarakhand: Disaster as a Tragedy. Critical Concerns, 2013. [Online]. Available: http://www.doccentre.net/cc/cc_uttarakhand.pdf.Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other