Open Access

Sprayed Water Flowrate, Temperature and Drop Size Effects on Small Capacity Flue Gas Condenser’s Performance

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] Geng L., et al. The end effect in air pollution: The role of perceived difference. Journal of Environmental Management 2019:232:413–420. doi:10.1016/j.jenvman.2018.11.05610.1016/j.jenvman.2018.11.05630500705Open DOISearch in Google Scholar

[2] Ziyarati T. M., et al. Greenhouse gas emission estimation of flaring in a gas processing plant: Technique development. Process Safety and Environmental Protection 2019:123:289–298. doi:10.1016/j.psep.2019.01.00810.1016/j.psep.2019.01.008Open DOISearch in Google Scholar

[3] Wu W., Jin Y., Carlsten C. Inflammatory health effects of indoor and outdoor particulate matter. Journal of Allergy and Clinical Immunology 2018:141(3):845. doi:10.1016/j.jaci.2017.12.98110.1016/j.jaci.2017.12.98129519450Open DOISearch in Google Scholar

[4] Kim K. H., Kabir E., Kabir S. A review on the human health impact of airborne particulate matter. Environment International 2015:74:136–143. doi:10.1016/j.envint.2014.10.00510.1016/j.envint.2014.10.00525454230Open DOISearch in Google Scholar

[5] CSB. Vides rādītāji Latvijā 2016. gadā. (Environmental indicators in Latvia 2016.) Riga: CSB, 2017:6.Search in Google Scholar

[6] World health organization Media centre. WHO | Ambient (outdoor) air quality and health. WHO, 2016.Search in Google Scholar

[7] Legal Acts of the Republic of Latvia. Regulations regarding Ambient Air Quality [Online]. [Accessed 21.03.2018]. Available: https://likumi.lv/ta/en/en/id/200712Search in Google Scholar

[8] Rīgas pilsētas gaisa piesārņojuma ar cietajām daļiņām (PM 10) teritoriālo zonu kartes Paskaidrojuma raksts. Riga: Rigas domes MVD, 2014.Search in Google Scholar

[9] CSB. EPM340. Energoresursu patēriņš mājsaimniecībās, ieskaitot patēriņa lauku saimniecībās un citās ekonomiskās aktivitātēs (TJ). PxWeb. [Online]. [Accessed 12.04.2019]. Available: http://data1.csb.gov.lv/pxweb/lv/vide/vide__energetika__energ_pat/EPM340.px/?rxid=a39c3f49-e95e-43e7-b4f0-dce111b48ba1 (in Latvian)Search in Google Scholar

[10] Růžičková J., et al. Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. Journal of Environmental Management 2018:236:769–783. doi:10.1016/j.jenvman.2019.02.03810.1016/j.jenvman.2019.02.03830776551Search in Google Scholar

[11] Hupa M., Karlström O., Vainio E. Biomass combustion technology development – It is all about chemical details. Proceedings of the Combustion Institute 2017:36(1):113–134. doi:10.1016/j.proci.2016.06.15210.1016/j.proci.2016.06.152Open DOISearch in Google Scholar

[12] Saidur R., et al. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews 2011:15(5):2262–2289. doi:10.1016/j.rser.2011.02.01510.1016/j.rser.2011.02.015Open DOISearch in Google Scholar

[13] Yongtie C., et al. Modelling of ash deposition in biomass boilers: A review. Energy Procedia 2017:143:623–628. doi:10.1016/j.egypro.2017.12.73710.1016/j.egypro.2017.12.737Open DOISearch in Google Scholar

[14] Bešenić T., et al. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion. Journal of Environmental Management 2018:215:177–184. doi:10.1016/j.jenvman.2018.03.01410.1016/j.jenvman.2018.03.01429571098Open DOISearch in Google Scholar

[15] Wolf C., et al. Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels. Journal of Environmental Management 2016:177:177–191. doi:10.1016/j.jenvman.2016.04.01910.1016/j.jenvman.2016.04.01927100330Open DOISearch in Google Scholar

[16] Klauser F., et al. Emission characterization of modern wood stoves under real-life oriented operating conditions. Atmospheric Environment 2018:192:257–266. doi:10.1016/j.atmosenv.2018.08.02410.1016/j.atmosenv.2018.08.024Open DOISearch in Google Scholar

[17] Bajcinovci B., Jerliu F. Achieving energy efficiency in accordance with bioclimatic architecture principles. Environmental and Climate Technologies 2016:18(1):54–63. doi:10.1515/rtuect-2016-001310.1515/rtuect-2016-0013Open DOISearch in Google Scholar

[18] Klavins M., Bisters V., Burlakovs J. Small Scale Gasification Application and Perspectives in Circular Economy. Environmental and Climate Technologies 2018:22(1):42–54. doi:10.2478/rtuect-2018-000310.2478/rtuect-2018-0003Open DOISearch in Google Scholar

[19] Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. Official Journal of European Union 2009:L 285/10.Search in Google Scholar

[20] Singh R., Shukla A. A review on methods of flue gas cleaning from combustion of biomass. Renewable and Sustainable Energy Reviews 2014:29:854–864. doi:10.1016/j.rser.2013.09.00510.1016/j.rser.2013.09.005Open DOISearch in Google Scholar

[21] Vigants E., et al. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007Open DOISearch in Google Scholar

[22] Gao D., et al. Moisture and latent heat recovery from flue gas by nonporous organic membranes. Journal of Cleaner Production 2019:225:1065–1078. doi:10.1016/j.jclepro.2019.03.32610.1016/j.jclepro.2019.03.326Open DOISearch in Google Scholar

[23] Cortina M. Flue gas condenser for biomass boilers, 2006.Search in Google Scholar

[24] Jenkins C. F. Condensers. 2011:2(6).10.5594/J18004Search in Google Scholar

[25] Barma M. C., et al. A review on boilers energy use, energy savings, and emissions reductions. Renewable and Sustainable Energy Reviews 2017:79:970–983. doi:10.1016/j.rser.2017.05.18710.1016/j.rser.2017.05.187Open DOISearch in Google Scholar

[26] Zhao S., et al. Simultaneous heat and water recovery from flue gas by membrane condensation: Experimental investigation. Applied Thermal Engineering 2017:113:843–850. doi:10.1016/j.applthermaleng.2016.11.10110.1016/j.applthermaleng.2016.11.101Open DOISearch in Google Scholar

[27] Wei M., et al. Experimental investigation on vapor-pump equipped gas boiler for flue gas heat recovery. Appied Thermal Engineering 2019:147:371–379. doi:10.1016/j.applthermaleng.2018.07.06910.1016/j.applthermaleng.2018.07.069Open DOISearch in Google Scholar

[28] Ramanauskas V., Miliauskas F. The water droplets dynamics and phase transformations in biofuel flue gases flow. International Journal of Heat and Mass Transfer 2019:131:546–557. doi:10.1016/j.ijheatmasstransfer.2018.06.09510.1016/j.ijheatmasstransfer.2018.06.095Open DOISearch in Google Scholar

[29] Terhan M., Comakli K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Applied Thermal Engineering 2016:100:1007–1015. doi:10.1016/j.applthermaleng.2015.12.12210.1016/j.applthermaleng.2015.12.122Open DOISearch in Google Scholar

[30] Vigants G., et al. Efficiency Diagram for District Heating System with Gas Condensing Unit. Energy Procedia 2015:72:119–126. doi:10.1016/j.egypro.2015.06.01710.1016/j.egypro.2015.06.017Open DOISearch in Google Scholar

[31] Priedniece V., et al. Particulate matter emission decrease possibility from household sector using flue gas condenser – fog unit. Analysis and interpretation of results. Environmental and Climate Technologies 2019:23(1):135–151. doi:10.2478/rtuect-2019-001010.2478/rtuect-2019-0010Open DOISearch in Google Scholar

[32] Priedniece V., et al. Laboratory research of the flue gas condenser – fog unit. Energy Procedia 2018:147:482–487. doi:10.1016/j.egypro.2018.07.05610.1016/j.egypro.2018.07.056Open DOISearch in Google Scholar

[33] Priedniece V., et al. Experimental and analytical study of the flue gas condenser – fog unit. Energy Procedia 2019:158:822–827. doi:10.1016/j.egypro.2019.01.21510.1016/j.egypro.2019.01.215Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other