Open Access

Implementing User Behaviour on Dynamic Building Simulations for Energy Consumption

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] International Energy Agency (IEA). CO2 emissions from fuel combustion Highlights. Paris: IEA, 2013.Search in Google Scholar

[2] EU Climate Action [Online]. Available: https://ec.europa.eu/clima/citizens/eu_enSearch in Google Scholar

[3] Power A. Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability? Energy Policy 2008:36(2):4487–4501. doi:10.1016/j.enpol.2008.09.02210.1016/j.enpol.2008.09.022Open DOISearch in Google Scholar

[4] Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC. Official Journal of European Union 2012:L315:1–56.Search in Google Scholar

[5] European Commission. European Strategic Energy Technology Plan [Online]. Available: https://ec.europa.eu/jrc/sites/default/files/9170_hi-res.jpgSearch in Google Scholar

[6] ECTP, E2B. Energy-efficient Buildings PPP beyond 2013. Research & Innovation Roadmap. Draft, 2012.Search in Google Scholar

[7] The Buildings Performance Institute Europe BPIE. Implementing the cost-optimal methodology in EU countries, 2013. [Online]. Available: http://bpie.eu/wp-content/uploads/2015/10/Implementing_Cost_Optimality.pdfSearch in Google Scholar

[8] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate Change and Buildings Energy Efficiency – the Key Role of Residents. Environmental and Climate Technologies 2016:17(1):30–43. doi:10.1515/rtuect-2016-000410.1515/rtuect-2016-0004Search in Google Scholar

[9] Bourdeau M., Zhai X. Q., Nefzaoui E., Guo X., Chatellier P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 2019:48:101533. doi:10.1016/j.scs.2019.10153310.1016/j.scs.2019.101533Search in Google Scholar

[10] Amasyali K., El-Gohary N. M. A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews 2018:81(Part1):1192–1205. doi:10.1016/j.rser.2017.04.09510.1016/j.rser.2017.04.095Search in Google Scholar

[11] Ma Z., Ye C., Li H., Ma W. Applying support vector machines to predict building energy consumption in China. Energy Procedia 2018:152:780–786. doi:10.1016/j.egypro.2018.09.24510.1016/j.egypro.2018.09.245Open DOISearch in Google Scholar

[12] Zhong H., Wang J., Jia H., Mu Y., Lv S. Vector field-based support vector regression for building energy consumption prediction. Applied Energy 2019:242:403–414. doi:10.1016/j.apenergy.2019.03.07810.1016/j.apenergy.2019.03.078Open DOISearch in Google Scholar

[13] Tian C., Li C., Zhang G., Lv Y. Data driven parallel prediction of building energy consumption using generative adversarial nets. Energy and Buildings 2019:186:230–243. doi:10.1016/j.enbuild.2019.01.03410.1016/j.enbuild.2019.01.034Open DOISearch in Google Scholar

[14] Goudarzi S., Anisi M. H., Kama N., Doctor F., Soleymani S. A., Sangaiah A. K. Predictive modelling of building energy consumption based on a hybrid nature-inspired optimization algorithm. Energy and Buildings 2019:196:83–93. doi:10.1016/j.enbuild.2019.05.03110.1016/j.enbuild.2019.05.031Open DOISearch in Google Scholar

[15] Robinson C., Dilkina B., Hubbs J., Zhang W., Guhathakurta S., Brown M. A., Pendyala R. M. Machine learning approaches for estimating commercial building energy consumption. Applied Energy 2017:208:889–904. doi:10.1016/j.apenergy.2017.09.06010.1016/j.apenergy.2017.09.060Open DOISearch in Google Scholar

[16] Wang H., Zhai Z. Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings 2016:128:319–335. doi:10.1016/j.enbuild.2016.06.08010.1016/j.enbuild.2016.06.080Open DOISearch in Google Scholar

[17] Smith C. L., Stander J. M., Tyler A. V. Human behaviour incorporation into ecological computer simulations. Environmental Management 1982:6(3):251–260. doi:10.1007/BF0186688810.1007/BF01866888Open DOISearch in Google Scholar

[18] Bariss U., Bazbauers G., Blumberga A., Blumberga D. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. doi:10.1515/rtuect-2017-000910.1515/rtuect-2017-0009Open DOISearch in Google Scholar

[19] Allard I., Olofsson T., Nair N. Energy evaluation of residential buildings: Performance gap analysis incorporating uncertainties in the evaluation methods. Building Simulation 2018:11(4):725–737. doi:10.1007/s12273-018-0439-710.1007/s12273-018-0439-7Open DOISearch in Google Scholar

[20] De Wilde P. The gap between predicted and measured energy performance of buildings: A framework for investigation. Automation in Construction 2014:41:40–49. doi:10.1016/j.autcon.2014.02.00910.1016/j.autcon.2014.02.009Open DOISearch in Google Scholar

[21] Biseniece E., Freimanis R., Purvins R., Gravelsins A., Pumpurs A., Blumberga A. Study of Hygrothermal Processes in External Walls with Internal Insulation. Environmental and Climate Technologies 2018:22(1):22–41. doi:10.1515/rtuect-2018-000210.1515/rtuect-2018-0002Open DOISearch in Google Scholar

[22] Monetti V., Davin E., Fabrizio E., André P., Filippi M. Calibration of Building Energy Simulation Models Based on Optimization: A Case Study. Energy Procedia 2015:78:2971–2976. doi:10.1016/j.egypro.2015.11.69310.1016/j.egypro.2015.11.693Open DOISearch in Google Scholar

[23] Hong T., Kim J., Jeong J., Lee M., Ji C. Automatic calibration model of a building energy simulation using optimization algorithm. Energy Procedia 2017:105:3698–3704. doi:10.1016/j.egypro.2017.03.85510.1016/j.egypro.2017.03.855Open DOISearch in Google Scholar

[24] Asadi S., Mostavi E., Boussaa D., Indaganti M. Building energy model calibration using automated optimization-based algorithm. Energy and Buildings 2019:198:106–114. doi:10.1016/j.enbuild.2019.06.00110.1016/j.enbuild.2019.06.001Open DOISearch in Google Scholar

[25] Eguía Oller P., Alonso Rodríguez J. M., Saavedra González A., Arce Fariña E., Granada Álvarez E. Improving the calibration of building simulation with interpolated weather datasets. Renewable Energy 2018:122:608–618. doi:10.1016/j.renene.2018.01.10010.1016/j.renene.2018.01.100Open DOISearch in Google Scholar

[26] Crowther P. Design for Disassembly to Recover Embodied Energy. In Proceedings of the 16th International Conference on Passive and Low-Energy Architecture, Melbourne, Australia, 22–24 September, 1999.Search in Google Scholar

[27] Lutzenhiser L. A cultural model of household energy consumption. Energy 1992:17(1):47–60. doi:10.1016/0360-5442(92)90032-U10.1016/0360-5442(92)90032-Open DOISearch in Google Scholar

[28] Juodis E., Jaraminiene E., Dudkiewicz E. Inherent variability of heat consumption in residential buildings. Energy and Buildings 2009:41(11):1188–1194. doi:10.1016/j.enbuild.2009.06.00710.1016/j.enbuild.2009.06.007Open DOISearch in Google Scholar

[29] Jansson-Boyd C., Robison R., Cloherty R., Jimenez-Bescos C. Complementing retrofit with engagement: exploring energy consumption with social housing tenants. International Journal of Energy Research 2017:41(8):1150–1163. doi:10.1002/er.369810.1002/er.3698Search in Google Scholar

[30] Shippee G. Energy consumption and conservation psychology: A review and conceptual analysis. Environmental Management 1980:4(4):297–314. doi:10.1007/BF0186942310.1007/BF01869423Open DOISearch in Google Scholar

[31] Lammers J. T. H., Berglund L. G., Stolwijk J. A. J. Energy conservation and thermal comfort in a New York city high rise office building. Environmental Management 1978:2(2):113–117. doi:10.1007/BF0186623710.1007/BF01866237Open DOISearch in Google Scholar

[32] Designbuilder software [Online]. Available: http://www.designbuilding.com.Search in Google Scholar

[33] IWEC. International Weather for Energy Calculations, Weather Files: User’s Manual and CD-ROM. Atlanta: ASHRAE, 2001.Search in Google Scholar

[34] U.S. Department of Energy. Input Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output, 2012.Search in Google Scholar

[35] Government of Spain. Ministry of Fomento. Spanish Technical Building Code, basic document DB-HE “Energy saving”, 2013. [Online]. Available: http://www.codigotecnico.org/Search in Google Scholar

[36] Huebner G. M., McMichael M., Shipworth D., Shipworth M., Durand-Daubin M., Summerfield A. The reality of English living rooms, A comparison of internal temperatures against common model assumptions. Energy and Buildings 2013:66:688–696. doi:10.1016/j.enbuild.2013.07.02510.1016/j.enbuild.2013.07.025Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other