Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] UNFCCC. Conference of the Parties (COP). Adoption Of The Paris Agreement. Presented at the Conference of the Parties COP 21, Paris, France, 2015. Adopt. Paris Agreement. Propos. by Pres 2015:21932:32.Search in Google Scholar

[2] European Parlament. REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the Governance of the Energy Union and Climate Action, amending Directive 94/22/EC, Directive 98/70/EC, Directive 2009/31/EC, Regulation (EC) No 663/2009, Regulation (EC) No 715/2009, Directive 2009/73/EC, Council Directive 2009/119/EC, Directive 2010/31/EU, Directive 2012/27/EU, Directive 2013/30/EU and Council Directive (EU) 2015/652 and repealing Regulation (EU) No 525/2013. Brussels: European Union, 2018:PE-CONS 55/18.Search in Google Scholar

[3] Council of the European Union. Council Conclusions on Energy Union management system. Brussels, 2015.Search in Google Scholar

[4] Council of the European Union. Conclusions on Climate and Energy pact. Brussels: EUCO, 2014:169/14.Search in Google Scholar

[5] Ministry of Economics. Latvijas nacionālais enerģētikas un klimata plāns 2021. – 2030. gadam. Riga: Ekonomikas Ministrija, 2018:19122018(2).Search in Google Scholar

[6] Central Statistical Bureau of Latvia. [Online]. [Accessed 25.04.2019]. Available: https://www.csb.gov.lv/en/sakumsSearch in Google Scholar

[7] Yoon T., Ma Y., Rhodes C. Individual Heating systems vs. District Heating systems: What will consumers pay for convenience ? Energy Policy 2015:86:73–81. doi:10.1016/j.enpol.2015.06.02410.1016/j.enpol.2015.06.024Open DOISearch in Google Scholar

[8] Fraga C., Hollmuller P., Schneider S., Lachal B. Heat pump systems for multifamily buildings: Potential and constraints of several heat sources for diverse building demands. Applied Energy 2018:225:1033–1053. doi:10.1016/j.apenergy.2018.05.00410.1016/j.apenergy.2018.05.004Search in Google Scholar

[9] Alam M., Zou P. X. W., Sanjayan J., Ramakrishnan S. Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne. Applied Energy 2019:238:1582–1595. doi:10.1016/j.apenergy.2019.01.11610.1016/j.apenergy.2019.01.116Open DOISearch in Google Scholar

[10] Agathokleous R., et al. Building façade integrated solar thermal collectors for air heating: experimentation, modelling and applications. Applied Energy 2019:239:658–679. doi:10.1016/j.apenergy.2019.01.02010.1016/j.apenergy.2019.01.020Search in Google Scholar

[11] Wang G., Zhao Y., Quan Z., Tong J. Application of a multi-function solar-heat pump system in residential buildings. Applied Thermal Engineering 2018:130:922–937. doi:10.1016/j.applthermaleng.2017.10.04610.1016/j.applthermaleng.2017.10.046Open DOISearch in Google Scholar

[12] Albatayneh A., et al. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011Open DOISearch in Google Scholar

[13] Ziemele J., et al. System dynamics model analysis of pathway to 4th generation district heating in Latvia. Energy 2016:110:85–94. doi:10.1016/j.energy.2015.11.07310.1016/j.energy.2015.11.073Open DOISearch in Google Scholar

[14] Soloha R., Pakere I., Blumberga D. Solar energy use in district heating systems. A case study in Latvia. Energy 2017:137:586–594. doi:10.1016/j.energy.2017.04.15110.1016/j.energy.2017.04.151Open DOISearch in Google Scholar

[15] Polikarpova I., Rosa M. Energy reduction potential of the district heating company introducing energy management systems. Energy Procedia 2017:128:66–71. doi:10.1016/j.egypro.2017.09.01610.1016/j.egypro.2017.09.016Open DOISearch in Google Scholar

[16] Žandeckis A., et al. Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler. Applied Energy 2013:101:244–252. doi:10.1016/j.apenergy.2012.03.04910.1016/j.apenergy.2012.03.049Open DOISearch in Google Scholar

[17] Kuznecova I., Gedrovics M., Kalnins S. N., Gusca J. Quantitative Analysis of Individual Heating Sector of Latvia. Energy Procedia 2017:113:494–500. doi:10.1016/j.egypro.2017.04.04910.1016/j.egypro.2017.04.049Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other