Open Access

Solar Energy in Low Temperature District Heating

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] Narula K., et al. Strategies for decarbonising the Swiss heating system. Energy 2019:169:1119–1131. doi:10.1016/j.energy.2018.12.08210.1016/j.energy.2018.12.082Open DOISearch in Google Scholar

[2] Hast A., Syri S., Lekavičius V., Galinis A. District heating in cities as a part of low-carbon energy system. Energy 2018:152:627–639. doi:10.1016/j.energy.2018.03.15610.1016/j.energy.2018.03.156Open DOISearch in Google Scholar

[3] Kranzl L., et al. Renewable energy in the heating sector in Austria with particular reference to the region of Upper Austria. Energy Policy 2013:59:17–31. doi:10.1016/j.enpol.2012.08.06710.1016/j.enpol.2012.08.067Open DOISearch in Google Scholar

[4] Latosov E., et al. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. doi:10.2478/rtuect-2019-000110.2478/rtuect-2019-0001Open DOISearch in Google Scholar

[5] Vallios I., Tsoutsos T., Papadakis G. Design of biomass district heating systems. Biomass and Bioenergy 2009:33(4):659–678. doi:10.1016/j.biombioe.2008.10.00910.1016/j.biombioe.2008.10.009Open DOISearch in Google Scholar

[6] Muizniece I., Blumberga D. Wood resources for energy sector in Latvia. Is it a sustainable solution? Energy Procedia 2017:128:287–291. doi:10.1016/j.egypro.2017.09.07610.1016/j.egypro.2017.09.076Open DOISearch in Google Scholar

[7] Muizniece I., et al. Innovative bioproducts from forest biomass. Method of analysis. Energy Procedia 2017:113:434–441. doi:10.1016/j.egypro.2017.04.03510.1016/j.egypro.2017.04.035Open DOISearch in Google Scholar

[8] Mantau U. Wood flows in Europe (EU27). Project report. Celle 2012.Search in Google Scholar

[9] Gravelsins A., Blumberga A., Blumberga D., Muizniece I. Economic analysis of wood products: system dynamics approach. Energy Procedia 2017:128:431–436. doi:10.1016/j.egypro.2017.09.02310.1016/j.egypro.2017.09.023Open DOISearch in Google Scholar

[10] Mola M., Feofilovs M., Romagnoli F. Energy resilience: research trends at urban, municipal and country levels. Energy Procedia 2018:147:104–113. doi:10.1016/j.egypro.2018.07.03910.1016/j.egypro.2018.07.039Search in Google Scholar

[11] Renewables 2018. Global status report. Available: http://www.indiaenvironmentportal.org.in/files/file/Renewables%202018%20Global%20Status%20Report.pdfSearch in Google Scholar

[12] Rama M., Mohammad S. Comparison of distributed and centralised integration of solar heat in a district heating system. Energy 2017:137:649–660. doi:10.1016/j.energy.2017.03.11510.1016/j.energy.2017.03.115Open DOISearch in Google Scholar

[13] Lennermo G., Lauenburg P., Werner S. Control of decentralised solar district heating. Solar Energy 2019:179:307–315. doi:10.1016/j.solener.2018.12.08010.1016/j.solener.2018.12.080Open DOISearch in Google Scholar

[14] Planenergi. Solvarme i Danmark 1988–2018 [Online]. [Accessed 12.05.2019]. Available: http://planenergi.dk/arbejdsomraader/fjernvarme/solvarme/solvarme-i-danmark-1988-2018Search in Google Scholar

[15] Bauer D., et al. German central solar heating plants with seasonal heat storage. Solar Energy 2010:84(4):612–623. doi:10.1016/j.solener.2009.05.01310.1016/j.solener.2009.05.013Open DOISearch in Google Scholar

[16] Parida B., Iniyan S., Goic R. A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews 2011:15(3):1625–1636. doi:10.1016/j.rser.2010.11.03210.1016/j.rser.2010.11.032Open DOISearch in Google Scholar

[17] Yuting J., Alva G., Fang G. Development and applications of photovoltaic–thermal systems: A review. Renewable and Sustainable Energy Reviews 2019:102:249–265. doi:10.1016/j.rser.2018.12.03010.1016/j.rser.2018.12.030Open DOISearch in Google Scholar

[18] Good C, Chen J., Dai Y, Hestnes A. G. Hybrid photovoltaic-thermal systems in buildings – a review. Energy Procedia 2015:70:683–690. doi:10.1016/j.egypro.2015.02.17610.1016/j.egypro.2015.02.176Open DOISearch in Google Scholar

[19] Loken E. Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews 2007:11(7):1584–1595. doi:10.1016/j.rser.2005.11.00510.1016/j.rser.2005.11.005Open DOISearch in Google Scholar

[20] Pakere I., Lauka D., Blumberga D. Solar Power and Heat Production via Photovoltaic Thermal Panels for District Heating and Industrial Plant. Energy 2018:154:424–432. doi:10.1016/j.energy.2018.04.13810.1016/j.energy.2018.04.138Open DOISearch in Google Scholar

[21] Soloha R., Pakere I., Blumberga D. Solar Energy Use in District Heating Systems. A Case Study in Latvia. Energy 2017:137:586–594. doi:10.1016/j.energy.2017.04.15110.1016/j.energy.2017.04.151Open DOISearch in Google Scholar

[22] Gravelsins A., Pakere I., Tukulis A., Blumberga D. Solar Power in District Heating. P2H Flexibility Concept. Energy 2019:181:1023–1035. doi:10.1016/j.energy.2019.05.22410.1016/j.energy.2019.05.224Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other