Open Access

Potential of Energy Willow Plantations for Biological Reclamation of Soils Polluted by 137Cs and Heavy Metals, and for Control of Nutrients Leaking into Water Systems

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] Mosiej J., et al. Biomass Production in Energy Forests. Ecosystem Health and Sustainable Agriculture 3. Uppsala: Uppsala University, 2012:196.Search in Google Scholar

[2] Van T. T. et al. Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam. Environmental Management 2019:63(4):444–454. doi:10.1007/s00267-018-1007-810.1007/s00267-018-1007-8647011829453646Open DOISearch in Google Scholar

[3] Panagos P., et al. Contaminated 447 sites in Europe: review of the current situation based on data collected through a European network. Journal of Environmental and Public Health 2013:ID158764:11. doi:10.1155/2013/15876410.1155/2013/158764369739723843802Search in Google Scholar

[4] Rascio N., Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science 2011:180(2):169–181. doi:10.1016/j.plantsci.2010.08.01610.1016/j.plantsci.2010.08.01621421358Open DOISearch in Google Scholar

[5] Van der Ent A., Mulligan D. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. Journal of Chemical Ecology 2015:41(4):396–408. doi:10.1007/s10886-015-0573-y10.1007/s10886-015-0573-y25921447Open DOISearch in Google Scholar

[6] Escarré J., et al. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist 2000:145(3):429–437. doi:10.1046/j.1469-8137.2000.00599.x10.1046/j.1469-8137.2000.00599.x33862907Open DOISearch in Google Scholar

[7] Saurabh S., et al. Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel 2016:183:107–114. doi:10.1016/j.fuel.2016.06.02510.1016/j.fuel.2016.06.025Open DOISearch in Google Scholar

[8] Bert V., et al. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist 2000:146(2):225–233. doi:10.1046/j.1469-8137.2000.00634.x10.1046/j.1469-8137.2000.00634.x33862970Search in Google Scholar

[9] Ashraf M., et al. Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. Journal of Environmental Biology 2011:32(5):659–666.Search in Google Scholar

[10] Nsanganwimana F., et al. Metal accumulation and shoot yield of Miscanthus giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture, Ecosystems and Environment 2015:213:61–71. doi:10.1016/j.agee.2015.07.02310.1016/j.agee.2015.07.023Search in Google Scholar

[11] Priedniece V., et al. Bioproducts from Potatoes. A Review. Environmental and Climate Technologies 2017:21(1):18–27. doi:10.1515/rtuect-2017-001310.1515/rtuect-2017-0013Open DOISearch in Google Scholar

[12] Zihare L., Blumberga D. Market Opportunities for Cellulose Products from Combined Renewable Resources. Environmental and Climate Technologies 2017:19(1):33–38. doi:10.1515/rtuect-2017-000310.1515/rtuect-2017-0003Open DOISearch in Google Scholar

[13] Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. doi:10.2478/rtuect-2018-001010.2478/rtuect-2018-0010Open DOISearch in Google Scholar

[14] Marmiroli M., et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology 2011:31(12):1319–1334. doi:10.1093/treephys/tpr09010.1093/treephys/tpr090Open DOISearch in Google Scholar

[15] Fischer G., et al. Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass and Bioenergy 2005:28(2):119–132. doi:10.1016/j.biombioe.2004.08.01310.1016/j.biombioe.2004.08.013Open DOISearch in Google Scholar

[16] Rosenqvist H., Roos A., Ling E., Hektor B. Willow growers in Sweden. Biomass and Bioenergy 2000:18(2):137–145. doi:10.1016/S0961-9534(99)00081-110.1016/S0961-9534(99)00081-1Open DOISearch in Google Scholar

[17] Dimitriou J., Aronsson P. Willows for energy and phytoremediation in Sweden. Unasylva 2005:56:47–50.Search in Google Scholar

[18] Buchholz T., Volk T. Profitability of Willow Biomass Crops Affected by Incentive Programs. BioEnergy Research 2013:6(1):53–64. doi:10.1007/s12155-012-9234-y10.1007/s12155-012-9234-yOpen DOISearch in Google Scholar

[19] Schweier J., Becker G. Harvesting of short rotation coppice – harvesting trials with a cut and storage system in Germany. Silva Fennica 2012:46(2):287–299. doi:10.14214/sf.6110.14214/sf.61Search in Google Scholar

[20] Goor F., Davydchuk V., Ledent J. Assessment of the potential of willow SRC plants for energy production in areas contaminated by radionuclide deposits: methodology and perspectives. Biomass and Bioenergy 2001:21(4):225–235. doi:10.1016/S0961-9534(01)00035-610.1016/S0961-9534(01)00035-6Open DOISearch in Google Scholar

[21] Djelic G., et al. Transfer factors of natural radionuclides and 137Cs from soil to plants used in traditional medicine in central Serbia. Journal of Environmental Radioactivity 2016:158–159:81–88. doi:10.1016/j.jenvrad.2016.03.02810.1016/j.jenvrad.2016.03.02827082759Open DOISearch in Google Scholar

[22] Vollenweider R. A. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia 1976:53–83.Search in Google Scholar

[23] Munn M., Frey J., Tesoriero A. The Influence of Nutrients and Physical Habitat in Regulating Algal Biomass in Agricultural Streams. Environmental Management 2010:45:603–615. doi:10.1007/s00267-010-9435-010.1007/s00267-010-9435-0284287820143065Open DOISearch in Google Scholar

[24] Giakoumis T., Voulvoulis N. The Transition of EU Water Policy Towards the Water Framework Directive’s Integrated River Basin Management Paradigm. Environmental Management 2018:62(5):819–831. doi:10.1007/s00267-018-1080-z10.1007/s00267-018-1080-z620882029987347Open DOISearch in Google Scholar

[25] Environmental Science. Uppsala: The Baltic University Press, 2003:824.Search in Google Scholar

[26] Aronsson P., et al. Spatial variation in above-ground growth in unevenly wastewater-irrigated willow Salix viminalis plantations. Ecological Engineering 2002:19(4):281–287. doi:10.1016/S0925-8574(02)00095-210.1016/S0925-8574(02)00095-2Open DOISearch in Google Scholar

[27] Elowson S. Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land. Biomass and Bioenergy 1999:16(4):281–290. doi:10.1016/S0961-9534(98)00087-710.1016/S0961-9534(98)00087-7Open DOISearch in Google Scholar

[28] Enformable Nuclear News. Radionuclide Pollution and Environmental Fate-Impact [Online]. [Accessed 01.02.2019]. Available: http://enformable.com/2011/11/radionuclide-pollution-and-environmental-fate-impact/Search in Google Scholar

[29] Rodzkin A., Ivanykovich V., Pronko S., Kresova E. Willow wood production on radionuclide polluted areas. Proceedings of Natural Sciences, Matica Sprska 2010:119:105–113. doi:10.2298/ZMSPN1019105R10.2298/ZMSPN1019105Open DOISearch in Google Scholar

[30] Borišev М. Phytoextraction of Cd, Ni, and Pb Using Four Willow Clones (Salix spp.) Polish Journal of Environmental Studies 2009:18:4:553–561.Search in Google Scholar

[31] Caslin B., Finnan J., McCracken A. Willow Varietal Identification Guide. Ireland, 2012.Search in Google Scholar

[32] Oljača R., Rodzkin O., Krstić B., Govedar Z. Fiziologija vrba. Willow Physiology. Laktaši: GrafoMark, 2017.Search in Google Scholar

[33] Rodzkin A., et al. The investigation of morphological characteristics of willow species in different environmental conditions. Matica Srpska Journal 2016:131:63–72. doi:10.2298/ZMSPN1631063R10.2298/ZMSPN1631063Open DOISearch in Google Scholar

[34] Rosen K., von Fircks Y., Vinichuk M., Sennerby-Forsse L. Accumulation of 137Cs after potassium fertilization in plant organs of Salix viminalis L. and in combusted ash. Biomass and Bioenergy 2011:35(7):2765–2772. doi:10.1016/j.biombioe.2011.03.01110.1016/j.biombioe.2011.03.011Open DOISearch in Google Scholar

[35] Von Fircks Y., Rosen K. Uptake and distribution of 137Cs and 90Sr in Salix viminalis plants. Journal of Environmental Radioactivity 2002:63(1):1–14. doi:10.1016/S0265-931X(01)00131-X10.1016/S0265-931X(01)00131-XOpen DOISearch in Google Scholar

[36] De Preter P., van Loon L., Maes A., Cremers A. Solid/liquid distribution of radiocaesium in boom clay. A quantitative interpretation. Radiochimica Acta 1991:52/53(2):299–302. doi:10.1524/ract.1991.5253.2.29910.1524/ract.1991.5253.2.299Open DOISearch in Google Scholar

[37] Rosen K. Effects of potassium fertilization on cesium transfer to grass, barley and vegetables after Chernobyl. The Chernobyl Fallout in Sweden. Stockholm, 1991:305–22.Search in Google Scholar

[38] Smolders E., Kiebooms L., Buysse J., Merckx R. 137Cs uptake in spring wheat (Triticum aestivum L. Cv Tonic) at varying K supply. Plant and Soil 1996:181(2):205–209. doi:10.1007/BF0001205410.1007/BF00012054Open DOISearch in Google Scholar

[39] Jensen J., et al. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution 2009:157(3):931–937. doi:10.1016/j.envpol.2008.10.02410.1016/j.envpol.2008.10.02419062141Open DOISearch in Google Scholar

[40] Šyc M., et al. Willow trees from heavy metals phytoextraction as energy crops. Biomass and Bioenergy 2012:37:106–113. doi:10.1016/j.biombioe.2011.12.02510.1016/j.biombioe.2011.12.025Open DOISearch in Google Scholar

[41] Vandecasteele B., et al. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Science of the Total Environment 2009:407(20):5289–5297. doi:10.1016/j.scitotenv.2009.06.02210.1016/j.scitotenv.2009.06.02219619889Open DOISearch in Google Scholar

[42] Mleczek M., et al. Accumulation of selected heavy metals by different genotypes of Salix. Environmental and Experimental Botany 2009:66(2):289–296. doi:10.1016/j.envexpbot.2009.02.01010.1016/j.envexpbot.2009.02.010Open DOISearch in Google Scholar

[43] Lievens R., Carleer T., Cornelissen J., Yperma C. Fast pyrolysis of heavy metal contaminated willow: Influence of the plant part. Fuel 2009:88(8):1417–1425. doi:10.1016/j.fuel.2009.02.00710.1016/j.fuel.2009.02.007Search in Google Scholar

[44] Ermakov V., et al. Concentrating Metals by Plants of the Genus Salix and Their Importance for Identification of Cd Anomalies. Geochemistry International 2015:53(11):978–990. doi:10.1134/S001670291511002610.1134/S0016702915110026Open DOISearch in Google Scholar

[45] Laidlaw W., Baker A., Gregory D., Arndt S. Irrigation water quality influences heavy metal uptake by willows in biosolids. Journal of Environmental Management 2015:155:31–39. doi:10.1016/j.jenvman.2015.03.00510.1016/j.jenvman.2015.03.00525770960Open DOISearch in Google Scholar

[46] Wahsha M., et al. Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy. Journal of Geochemical Exploration 2012:123:19–24. doi:10.1016/j.gexplo.2012.07.00410.1016/j.gexplo.2012.07.004Open DOISearch in Google Scholar

[47] Marmiroli M., et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology 2011:31(12):1319–1334. doi:10.1093/treephys/tpr09010.1093/treephys/tpr09022052656Open DOISearch in Google Scholar

[48] Yang W., et al. Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: Application for phytoremediation. Journal of Geochemical Exploration 2015:149:1–7. doi:10.1016/j.gexplo.2014.09.00710.1016/j.gexplo.2014.09.007Open DOISearch in Google Scholar

[49] Salam M., et al. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. Journal of Environmental Management 2016:183/3:467–477. doi:10.1016/j.jenvman.2016.08.08210.1016/j.jenvman.2016.08.08227614557Open DOISearch in Google Scholar

[50] Meers E., et al. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany 2007:60(1):57–68. doi:10.1016/j.envexpbot.2006.06.00810.1016/j.envexpbot.2006.06.008Open DOISearch in Google Scholar

[51] Landberg T., Jensén P., Greger M. Strategies of cadmium and zinc resistance in willow by regulation of net accumulation. Biologia plantarum 2011:55(1):133–140. doi:10.1007/s10535-011-0018-610.1007/s10535-011-0018-6Open DOISearch in Google Scholar

[52] Wenwen W., et al. Effect of heavy metals combined stress on growth and metals accumulation of three Salix species with different cutting position. International Journal of Phytoremediation 2016:18(8):76–67. doi:10.1080/15226514.2015.113123710.1080/15226514.2015.113123726709734Search in Google Scholar

[53] Rodzkin A., Shkutnik O., Krstić B., Borisev M. Environmental background of fast-growing willow production on different type of soil. Eco-conference Novi Sad 2012:345–353.Search in Google Scholar

[54] Rodzkin A., et al. The Assessment of Cost of Biomass from Post-Mining Peaty Lands for Pellet Fabrication. Environmental and Climate Technologies 2018:22(1):118–131. doi:10.2478/rtuect-2018-000810.2478/rtuect-2018-0008Open DOISearch in Google Scholar

[55] AILE – Wilwater project LIFE04 ENV/FR/320 – Purification function of SRWC: summary of experimental results [Online]. [Accessed 01.02.2019]. Available: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=LIFE04ENVFR320_PurificationFonctionofSRC.pdfSearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other