Open Access

Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] Andersson B., Andersson R., Hakansson L. Computational Fluid Dynamics for Engineers. New York: Cambridge University Press Publ., 2012.10.1017/CBO9781139093590Search in Google Scholar

[2] Zhang H.-D., Zheng X-P. Characteristics of hazardous chemical accidents in China: A statistical investigation. Journal of Loss Prevention in the Process Industries 2012:25(4):686–693. doi:10.1016/j.jlp.2012.03.00110.1016/j.jlp.2012.03.001Open DOISearch in Google Scholar

[3] Hughes Ph., Ferrett E. Introduction to Health and Safety at Work: The Handbook for the NEBOSH National General Certificate. Oxford: Butterworth-Heinemann, 2011.10.4324/9780080959375Search in Google Scholar

[4] Nolan, D. Handbook of Fire and Explosion Protection Engineering Principles: for Oil, Gas, Chemical and Related Facilities 4th ed. Gulf Professional Publishing, 2018.Search in Google Scholar

[5] Hallenbeck W. H., Flowers R. E. Risk analysis for worker exposure to benzene. Environmental Management 1992:16(3):415–420. doi:10.1007/BF0240008110.1007/BF02400081Open DOISearch in Google Scholar

[6] Chrostowski P. C., Pearsall L. J., Shaw C. Risk assessment as a management tool for inactive hazardous materials disposal sites. Environmental Management 1985:9(5):433–441. doi:10.1007/BF0186634210.1007/BF01866342Open DOISearch in Google Scholar

[7] Levin S. A., et al. New perspectives in ecotoxicology. Environmental Management 1984:8(5):375–442. doi:10.1007/BF0187180710.1007/BF01871807Open DOISearch in Google Scholar

[8] Assael M. J., Kakosimos K. E. Fires, Explosions, and Toxic Gas Dispersions: Effects Calculation and Risk Analysis. New York: CRC Press Publ., 2010. doi:10.1201/978143982676810.1201/9781439826768Search in Google Scholar

[9] Huyen D. T. T., Tram L. T. B. Development of a Procedure for Evaluating the Impacts of the Accidental Emission of Hazardous Chemicals, Case Study in Ho Chi Minh City, Vietnam. Environmental Management 2019:63(4):486–494. doi:10.1007/s00267-017-0979-010.1007/s00267-017-0979-029302714Open DOISearch in Google Scholar

[10] Blumberga A., Timma L., Blumberga D. System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts. Environmental and Climate Technologies 2015:16(1):54–68. doi:10.1515/rtuect-2015-001210.1515/rtuect-2015-0012Search in Google Scholar

[11] Vigants E., et al. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007Open DOISearch in Google Scholar

[12] Bariss U., et al. System Dynamics Modeling of Households’ Electricity Consumption and Cost-Income Ratio: a Case Study of Latvia. Environmental and Climate Technologies 2017:20(1):36–50. doi:10.1515/rtuect-2017-000910.1515/rtuect-2017-0009Open DOISearch in Google Scholar

[13] Truong S. C. H., et al. Accidental benzene release risk assessment in an urban area using an atmospheric dispersion model. Atmospheric Environment 2016:144:146–159. doi:10.1016/j.atmosenv.2016.08.07510.1016/j.atmosenv.2016.08.075Open DOISearch in Google Scholar

[14] Granovskiy E. A., et al. Numerical Modeling of Hydrogen Release, Mixture and Dispersion in Atmosphere. Proceedings of 1-st International Conference on Hydrogen Safety, Pisa, Italy, 2005. [Online]. [Accessed 24.02.2019]. Available: http://conference.ing.unipi.it/ichs2005/Papers/110021.pdfSearch in Google Scholar

[15] Skob Y. A., Ugryumov M. L., Granovskiy E. A. Mathematical modeling of hydrogen explosion consequences at fueling station. Proceedings of 7th International Conference on Hydrogen Safety, Hamburg, Germany, 2017. [Online]. [Accessed 12.03.2019]. Available: https://hysafe.info/wp-content/uploads/2017_papers/159.pdfSearch in Google Scholar

[16] Kim C. H., et al. Operational Atmospheric Modeling System CARIS for Effective Emergency Response Associated with Hazardous Chemical Releases in Korea. Environmental Management 2004:33(3):345–354. doi:10.1007/s00267-003-0030-510.1007/s00267-003-0030-5Open DOISearch in Google Scholar

[17] Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. doi:10.2478/v10216-011-0022-y10.2478/v10216-011-0022-yOpen DOISearch in Google Scholar

[18] Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. doi:10.1016/j.egypro.2018.07.04310.1016/j.egypro.2018.07.043Search in Google Scholar

[19] Barisa A., Rosa M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018:147:86–95. doi:10.1016/j.egypro.2018.07.03610.1016/j.egypro.2018.07.036Open DOISearch in Google Scholar

[20] Puttock J. S., et al. Dispersion models and hydrogen fluoride predictions. Journal of Loss Prevention in the Process Industries 1991:4(1):16–28. doi:10.1016/0950-4230(91)80003-D10.1016/0950-4230(91)80003-Open DOISearch in Google Scholar

[21] Folch A., Costa A., Hankin R. K. S. Twodee-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences 2009:35(3):667–674. doi:10.1016/j.cageo.2007.12.01710.1016/j.cageo.2007.12.017Open DOISearch in Google Scholar

[22] Kopka P., Wawrzynczak A. Framework for stochastic identification of atmospheric contamination source in an urban area. Atmospheric Environment 2018:195:63–77. doi:10.1016/j.atmosenv.2018.09.03510.1016/j.atmosenv.2018.09.035Open DOISearch in Google Scholar

[23] Burns D. S., et al. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF. Atmospheric Environment 2012:56:212–221. doi:10.1016/j.atmosenv.2012.03.06710.1016/j.atmosenv.2012.03.067Open DOISearch in Google Scholar

[24] Merah A., Noureddine A. Reactive pollutants dispersion modeling in a street Canyon. International Journal of Applied Mechanics and Engineering 2019:24(1):91–103. doi:10.2478/ijame-2019-000610.2478/ijame-2019-0006Open DOISearch in Google Scholar

[25] Arvidson S., Davidson L., Peng S.-H. Interface methods for grey-area mitigation in turbulence-resolving hybrid RANS-LES. International Journal Heat and Fluid Flow 2018:73:236–257. doi:10.1016/j.ijheatfluidflow.2018.08.00510.1016/j.ijheatfluidflow.2018.08.005Open DOISearch in Google Scholar

[26] Lipatnikov A. N., Sabelnikov V. A., Poludnenko A. Y. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. International Journal Heat and Mass Transfer 2019:134:398–404. doi:10.1016/j.ijheatmasstransfer.2019.01.04310.1016/j.ijheatmasstransfer.2019.01.043Open DOISearch in Google Scholar

[27] Galeev A. D., Starovoitova E. V., Ponikarov S. I. Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere. Journal of Engineering Physics and Thermophysics 2013:86(1):219–228. doi:10.1007/s10891-013-0823-110.1007/s10891-013-0823-1Open DOISearch in Google Scholar

[28] Engeln-Müllges G., Niederdrenk K., Wodicka R. Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen. Berlin: Xpert.press Publ., 2010. (in German) doi:10.1007/978-3-642-13473-910.1007/978-3-642-13473-9Open DOISearch in Google Scholar

[29] Snegirev A. Y., Frolov A. S. The large eddy simulation of a turbulent diffusion flame. High Temperature 2011:49:690–704. doi:10.1134/S0018151X1104020110.1134/S0018151X11040201Open DOISearch in Google Scholar

[30] Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22(1):107–117. doi:10.2478/rtuect-2018-000710.2478/rtuect-2018-0007Open DOISearch in Google Scholar

[31] Belyaev N. N., Koptilaya O. V. Kompiuternoe modelirovanie zagriazneniia okruzhaiushchei sredy pri razlive ammiaka. Dnipropetrovsk. Ekologia prirodokoristuvannia – Ecology and nature management, Transactions of IPPE NAN Ukraine. 2002:2:158–162. (in Russian)Search in Google Scholar

[32] Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities. Environmental and Climate Technologies 2013:12(1):4–9. doi:10.2478/rtuect-2013-000910.2478/rtuect-2013-0009Open DOISearch in Google Scholar

[33] Matsak V. G., Khotsianov L. K. Gigienicheskoe znachenie skorosti ispareniia i davleniia para toksicheskikh veshchestv primeniaemykh v proizvodstve. Moscow: Medgiz, 1959. (in Russian)Search in Google Scholar

[34] RD-03-26-2007. Metodicheskiye ukazaniya po otsenke posledstviy avariynykh vybrosov opasnykh veshchestv. (Methodological guidelines for the assessment of the consequences of accidental releases of hazardous substances.) Moscow: STC “Industrial safety”, 2008:27(6):122.Search in Google Scholar

[35] Knott G. D. Interpolating Cubic Splines. Boston: Birkhäuser Publ., 2012.Search in Google Scholar

[36] Skob Y. A., Ugryumov M. L. Kompyuterna interaktyvna systema inzhenernoho analizu ta prohnozu “Toxic Spill Safety” dlya otsinky bezpeky pid chas avariynoho prolyttya toksychnoho zridzhenoho hazu. (Computer Interactive System “Toxic Spill Safety” of Engineering Analysis and Forecast for Safety Assessment of Accidental Spillage of Toxic Liquefied Gas). Official bulletin of copyrights 2017:45:212.Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other