Open Access

Optimization of the Effective Heat Supply Radius for the District Heating Systems

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
Special Issue of Environmental and Climate Technologies Part I: Energy, bioeconomy, climate changes and environment nexus

Cite

[1] Nuorkivi A. District heating and cooling policies worldwide. In: Wiltshire R. (Ed.), Advanced District Heating and Cooling (DHC) Systems. Woodhead Publishing is an imprint of Elsevier, 2016.10.1016/B978-1-78242-374-4.00002-1Search in Google Scholar

[2] Gong M., Werner S. Mapping energy and exergy flows of district heating in Sweden. Energy Procedia 2017:116:119–127. doi:10.1016/j.egypro.2017.05.06010.1016/j.egypro.2017.05.060Open DOISearch in Google Scholar

[3] Werner S. International review of district heating and cooling. Energy 2017:137:617–631. doi:10.1016/j.energy.2017.04.04510.1016/j.energy.2017.04.045Open DOISearch in Google Scholar

[4] Levin L., Beneson E., et al. Scientific and Technical Progress in District Heating and Cogeneration. In: Rudenko, Y. (Ed.), Soviet Technology Reviews Book Series. Section A. Energy Reviews. Taylor & Francis, UK, 1990.Search in Google Scholar

[5] Lund H., Werner S., Wiltshire R., et al. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014:68:1–11. doi:10.1016/j.energy.2014.02.08910.1016/j.energy.2014.02.089Open DOISearch in Google Scholar

[6] Vigants E., Prodanuks, Vigants G., Veidenbergs I., Blumberga D. Modelling of Technological Solutions to 4th Generation DH Systems. Environmental and Climate Technologies 2017:20(1):5–23. doi:10.1515/rtuect-2017-000710.1515/rtuect-2017-0007Open DOISearch in Google Scholar

[7] Lund H., Duic N., Ostergaard P., Mathiesen B. Smart energy systems and 4th generation district heating. Energy 2016:110:1–4.doi: 10.1016/j.energy.2016.07.10510.1016/j.energy.2016.07.105Open DOISearch in Google Scholar

[8] Oregi X., Hermoso N., Arrizabalaga E., Mabe L., Munoz I. Sensitivity assessment of a district energy assessment characterisation model based on cadastral data. Energy Procedia 2018:147:181–188. doi:10.1016/j.egypro.2018.07.05310.1016/j.egypro.2018.07.053Search in Google Scholar

[9] Locmelis K., Blumberga D., Bariss U. Energy efficiency in large industrial plants. Legislative aspects. Energy Procedia 2018:147:202–206. doi:10.1016/j.egypro.2018.07.05810.1016/j.egypro.2018.07.058Open DOISearch in Google Scholar

[10] Locmelis K., Blumberga A., Bariss U., Blumberga D. Energy policy for energy intensive manufacturing companies and its impact on energy efficiency improvements. System dynamics approach. Energy Procedia 2017:128:10–16. doi:10.1016/j.egypro.2017.09.00510.1016/j.egypro.2017.09.005Search in Google Scholar

[11] Polikarpova I., Rosa M. Energy reduction potential of the district heating company introducing energy management systems. Energy Procedia 2017:128:66–71. doi:10.1016/j.egypro.2017.09.01610.1016/j.egypro.2017.09.016Open DOISearch in Google Scholar

[12] Zinko H., Bohm B., Sipila K., Rama M. District heating distribution in areas with low heat demand density. In: Zinko H. (Ed.), Report from IEA Implementing Agreement on District Heating and Cooling, Including the Integration of CHP, Annex VIII 2008:8DHC-08-03.Search in Google Scholar

[13] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Methodological Approach to Determining the Effect of Parallel Energy Consumption on District Heating System. Environmental and Climate Technologies 2017:19(1):5–14. doi:10.1515/rtuect-2017-000110.1515/rtuect-2017-0001Open DOISearch in Google Scholar

[14] Latosov E., Volkova A., Siirde A., Thalfeldt M., Kurnitski J. The Impact of Parallel Energy Consumption on the District Heating Networks. Environmental and Climate Technologies 2019:23(1):1–13. doi:10.2478/rtuect-2019-000110.2478/rtuect-2019-0001Open DOISearch in Google Scholar

[15] Christensen B., Jensen-Butler C. Energy and urban structure: Heat planning in Denmark. Progress in Planning 1982:18(2):57–132. doi:10.1016/0305-9006(82)90008-310.1016/0305-9006(82)90008-3Open DOISearch in Google Scholar

[16] Kristensen P., Sletbjerg M. Energydata – planning and analysis in a GIS. Proceedings of the ESRI User Conference. Munich: 1998.Search in Google Scholar

[17] Moller B. A heat atlas for demand and supply management in Denmark. Management of Environmental Quality: An International Journal 2008:19(4):467–479. doi:10.1108/1477783081087865010.1108/14777830810878650Open DOISearch in Google Scholar

[18] Persson U., Werner S. Heat distribution and the future competitiveness of district heating. Applied Energy 2011:88(3):568–576. doi:10.1016/j.apenergy.2010.09.02010.1016/j.apenergy.2010.09.020Open DOISearch in Google Scholar

[19] Werner S. District heating and cooling in Sweden. Energy 2017:126:419–29. doi:10.1016/j.energy.2017.03.05210.1016/j.energy.2017.03.052Open DOISearch in Google Scholar

[20] Connolly D., Lund H., Mathiesen B., et al. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. doi:10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035Open DOISearch in Google Scholar

[21] Connolly D., Mathiesen B., Ostergaard P., et al. Heat Roadmap Europe: Second Pre-Study, Aalborg University, Halmstad University, Ecofys Germany GmbH, PlanEnergi and Euroheat & Power, 2013.Search in Google Scholar

[22] HRE4. Heat Roadmap Europe 4. Heating and Cooling, Facts and Figures [Online]. [Accessed 10.02.2019]. Available: http://www.heatroadmap.eu/Search in Google Scholar

[23] Persson U., Moller B., Werner S. Heat Roadmap Europe: Identifying strategic heat synergy regions. Energy Policy 2014:74:663–681. doi:10.1016/j.enpol.2014.07.01510.1016/j.enpol.2014.07.015Open DOISearch in Google Scholar

[24] Dalla-Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011:36(5):2407–2418. doi:10.1016/j.energy.2011.01.02410.1016/j.energy.2011.01.024Open DOISearch in Google Scholar

[25] Tol H., Svendsen S. Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark. Energy 2012:38:276–290. doi:10.1016/j.energy.2011.12.00210.1016/j.energy.2011.12.002Open DOISearch in Google Scholar

[26] Volkova A., Mashatin V., Hlebnikov A., Andres S. Methodology for the Improvement of Large District Heating Networks. Environmental and Climate Technologies 2012:10(1):39–45. doi:10.2478/v10145-012-0009-710.2478/v10145-012-0009-7Open DOISearch in Google Scholar

[27] Bolonina A., Bolonins G., Blumberga D. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation. Environmental and Climate Technologies 2014:14(1):41–46. doi:10.1515/rtuect-2014-001310.1515/rtuect-2014-0013Open DOISearch in Google Scholar

[28] Schmidt D., et al. Low temperature district heating for future energy systems. Energy Procedia 2017:116:26–38. doi:10.1016/j.egypro.2017.05.05210.1016/j.egypro.2017.05.052Open DOISearch in Google Scholar

[29] Schuchardt (neé Bestrzynski) G. K. Integration of decentralized thermal storages within district heating networks. Environmental and Climate Technologies 2016:18(1):5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009Open DOISearch in Google Scholar

[30] Persson U., Werner S. Effective width – the relative demand for district heating pipe lengths in city areas. In: Proceedings of The 12th International Symposium on District Heating and Cooling. Tallinn, Estonia: 2010:128–131.Search in Google Scholar

[31] BSREC. District Heating and Cooling, Combined Heat and Power and Renewable Energy Sources. The Baltic Sea Region Energy Cooperation, 2014. [Online]. [Accessed 10.02.2019]. Available: http://basrec.net/wp-content/uploads/2014/06/Appendix%20-%20country%20survey.pdfSearch in Google Scholar

[32] Patronen J., Kaura E., Torvestad C. Nordic heating and cooling. Nordic approach to EU's Heating and Cooling Strategy. Nordic Council of Ministers, 2017. [Online]. [Accessed 10.02.2019]. doi: 10.6027/TN2017-53210.6027/TN2017-532Open DOISearch in Google Scholar

[33] DEA. District Heating – Danish and Chinese Experience. Danish Energy Agency, Danish Board of District Heating; 2017. [Online]. [Accessed 10.02.2019]. Available: https://ens.dk/sites/ens.dk/files/energistyrelsen/Nyheder/district_heating_danish-chinese_experiences.pdfSearch in Google Scholar

[34] Zhang L., Gudmundsson O., Li H., Svendsen S. Comparison of District Heating Systems Used in China and Denmark. International Journal of Sustainable and Green Energy 2015:4(3):102–116.Search in Google Scholar

[35] Pakere I., Ziemele J., Blumberga D. DH company in prosumers role. Energy Procedia 2017:128:234–239. doi:10.1016/j.egypro.2017.09.06110.1016/j.egypro.2017.09.061Open DOISearch in Google Scholar

[36] Postnikov I., Stennikov V., Penkovskii A. Prosumer in the District Heating Systems: Operating and Reliability Modeling. Energy Procedia 2019:158:2530–2535. doi:10.1016/j.egypro.2019.01.41110.1016/j.egypro.2019.01.411Open DOISearch in Google Scholar

[37] Chicherin S. Low-temperature district heating distributed from transmission-distribution junctions to users: energy and environmental modelling. Energy Procedia 2018:147:382–389. doi:10.1016/j.egypro.2018.07.10710.1016/j.egypro.2018.07.107Open DOISearch in Google Scholar

[38] Brailov V., Kuznetsov Y., Khrilev L. Determining the economic efficiency of combined and separate schemes of power supply on the basis of nuclear and fossil fuel. Thermal Engineering 2011:58(12):1033–1042. doi:10.1134/S004060151112005610.1134/S0040601511120056Open DOISearch in Google Scholar

[39] Khrilev L., Smirnov I. Socio-Economic Principles and Lines of Development of District Heating. Thermal Engineering 2005:52(2):93–102.Search in Google Scholar

[40] Yakimov L. Maximum radius of district heating action. Heat and power 1931:9:8–10.Search in Google Scholar

[41] Stennikov V., Iakimetc E. Optimal planning of heat supply systems in urban areas. Energy 2016:110:157–165. doi:10.1016/j.energy.2016.02.06010.1016/j.energy.2016.02.060Open DOISearch in Google Scholar

[42] Filippov S. P. Development of Centralized District Heating in Russia. Thermal Engineering 2009:56(12):985–997. doi:10.1134/S004060150912001510.1134/S0040601509120015Open DOISearch in Google Scholar

[43] Papushkin V. Heat supply radius. The well-forgotten old. News of heat supply 2010:9:44–9.Search in Google Scholar

[44] Semenov V., Razorenov R. Express-analysis of relationship between heat transportation effectiveness and remoteness of consumers. News of heat supply 2006:6:36–38.Search in Google Scholar

[45] Stennikov V., Mednikova E. Analysis of Trends in the Development of Cities’ Heat Supply Systems. Thermal Engineering 2016:63(9):657–665. doi:10.1134/S004060151609006810.1134/S0040601516090068Open DOISearch in Google Scholar

[46] Ershova M. Introduction into a bi-level programming. Manual. Irkutsk: ISU, 2006.Search in Google Scholar

[47] Bard J. F. Practical Bilevel Optimization. Springer Science + Business Media Dordrecht, 1998. doi:10.1007/978-1-4757-2836-110.1007/978-1-4757-2836-1Open DOISearch in Google Scholar

[48] Dempe S. Foundations of Bilevel Programming. Dordrecht, Netherlands: Kluwer Academic Publishers, 2002.Search in Google Scholar

[49] Merenkov A., Khasilev V. Theory of hydraulic circuits. Мoscow: Nauka, 1985.Search in Google Scholar

[50] Sennova E., et al. Reliability of heat supply systems. Novosibirsk: Nauka, 2000.Search in Google Scholar

[51] Stennikov V., Postnikov I. Methods for the integrated reliability analysis of heat supply. Power Technology and Engineering 2014:47(6):446–453. doi:10.1007/s10749-014-0467-010.1007/s10749-014-0467-0Open DOISearch in Google Scholar

[52] Postnikov I., Stennikov V., Mednikova E., Penkovskii A. Methodology for optimization of component reliability of heat supply systems. Applied Energy 2018:227:365–374. doi:10.1016/j.apenergy.2017.11.07310.1016/j.apenergy.2017.11.073Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other