Open Access

Towards Efficient Waste Management in Latvia: An Empirical Assessment of Waste Composition

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
Special Issue of Environmental and Climate Technologies Part I: Energy, bioeconomy, climate changes and environment nexus

Cite

[1] Mohammadi M., Jämsä-Jounela S. L., Harjunkoski I. Optimal planning of municipal solid waste management systems in an integrated supply chain network. Computers & Chemical Engineering 2019:123:155–169. doi:10.1016/j.compchemeng.2018.12.02210.1016/j.compchemeng.2018.12.022Open DOISearch in Google Scholar

[2] Barisa A., Dzene I., Rosa M., Dobraja K. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia. Environmental and Climate Technologies 2015:15:48–58. doi:10.1515/rtuect-2015-000510.1515/rtuect-2015-0005Open DOISearch in Google Scholar

[3] Dzene I., et al. Energy Recovery from End-of-Life Tyres: Untapped Possibility to Reduce CO2 Emissions. Environmental and Climate Technologies 2010:4(1):35–41. doi:10.2478/v10145-010-0015-610.2478/v10145-010-0015-6Open DOISearch in Google Scholar

[4] Priedniece V., et al. Bioproducts from Potatoes. A Review. Environmental and Climate Technologies 2017:21(1):18–27. doi:10.1515/rtuect-2017-001310.1515/rtuect-2017-0013Open DOISearch in Google Scholar

[5] Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. doi:10.2478/rtuect-2018-001010.2478/rtuect-2018-0010Open DOISearch in Google Scholar

[6] Cobo S., Dominguez-Ramos A., Irabien A. From linear to circular integrated waste management systems: A review of methodological approaches. Resources, Conservation and Recycling 2018:135:279–295. doi:10.1016/j.resconrec.2017.08.00310.1016/j.resconrec.2017.08.003Open DOISearch in Google Scholar

[7] Lieder M., Rashid A. Towards circular economy implementation: a comprehensive review in context of manufacturing industry. Journal of Cleaner Production 2016:115:36–51. doi:10.1016/j.jclepro.2015.12.04210.1016/j.jclepro.2015.12.042Open DOISearch in Google Scholar

[8] Reike D., Vermeulen W. J. V., Witjes S. The circular economy: New or Refurbished as CE 3.0? — Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resources, Conservation and Recycling 2018:135:246–264. doi:10.1016/j.resconrec.2017.08.02710.1016/j.resconrec.2017.08.027Search in Google Scholar

[9] Velenturf A. P. M., Jopson J. S. Making the business case for resource recovery. Science of The Total Environment 2019:648:1031–1041. doi:10.1016/j.scitotenv.2018.08.22410.1016/j.scitotenv.2018.08.22430340251Open DOISearch in Google Scholar

[10] Eurostat Database. Generation of waste by waste category, hazardousness and NACE Rev. 2 activity.Search in Google Scholar

[11] Central Bureau of Statistics 2019. Environment and Energy database, VIG040. Municipal and hazardous waste: collection and treatment.Search in Google Scholar

[12] Castillo-Giménez J., Montañés A., Picazo-Tadeo A. J. Performance and convergence in municipal waste treatment in the European Union. Waste Management 2019:85:222–231. doi:10.1016/j.wasman.2018.12.02510.1016/j.wasman.2018.12.02530803576Open DOISearch in Google Scholar

[13] Eurostat Database. Treatment of waste by waste category, hazardousness and waste management operations.Search in Google Scholar

[14] Ministry of Environmental Protection and Regional Development of Latvia, 2013. National Waste Management Plan 2013–2020 [Online]. [Accessed 11.04.2019]. Available: http://polsis.mk.gov.lv/api/file/file9833.docSearch in Google Scholar

[15] Rosa M., Beloborodko A. A decision support method for development of industrial synergies: case studies of Latvian brewery and wood-processing industries. Journal of Cleaner Production 2015:105:461–470. doi:10.1016/j.jclepro.2014.09.06110.1016/j.jclepro.2014.09.061Open DOISearch in Google Scholar

[16] Dahlén L., Lagerkvist A. Methods for household waste composition studies. Waste Management 2008:28(7):1100–1112. doi:10.1016/j.wasman.2007.08.01410.1016/j.wasman.2007.08.01417920857Open DOISearch in Google Scholar

[17] Bisinella V., et al. Importance of waste composition for Life Cycle Assessment of waste management solutions. Journal of Cleaner Production 2017:164:1180-1191. doi:10.1016/j.jclepro.2017.07.01310.1016/j.jclepro.2017.07.013Open DOISearch in Google Scholar

[18] Arena U., Di Gregorio F. A waste management planning based on substance flow analysis. Resources, Conservation and Recycling 2014:85:54–66. doi:10.1016/j.resconrec.2013.05.00810.1016/j.resconrec.2013.05.008Open DOISearch in Google Scholar

[19] Keser S., Duzgun S., Aksoy A. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey. Waste Management 2012:32:359–371. doi:10.1016/j.wasman.2011.10.01710.1016/j.wasman.2011.10.01722104614Open DOISearch in Google Scholar

[20] Kumar A., Samadder S. R. An empirical model for prediction of household solid waste generation rate – A case study of Dhanbad, India. Waste Management 2017:68:3–15. doi:10.1016/j.wasman.2017.07.03410.1016/j.wasman.2017.07.03428757221Open DOISearch in Google Scholar

[21] Vu H. L., et al. Time-lagged effects of weekly climatic and socio-economic factors on ANN municipal yard waste prediction models. Waste Management 2019:84:129–140. doi:10.1016/j.wasman.2018.11.03810.1016/j.wasman.2018.11.03830691884Open DOISearch in Google Scholar

[22] Oribe-Garcia I., et al. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay. Waste Management 2015:39:26–34. doi:10.1016/j.wasman.2015.02.01710.1016/j.wasman.2015.02.01725769537Open DOISearch in Google Scholar

[23] Kolekar K. A., Hazra T., Chakrabarty S. N. A Review on Prediction of Municipal Solid Waste Generation Models. Procedia Environmental Sciences 2016:35:238–244. doi:10.1016/j.proenv.2016.07.08710.1016/j.proenv.2016.07.087Open DOISearch in Google Scholar

[24] Lebersorger S., Schneider F. Discussion on the methodology for determining food waste in household waste composition studies. Waste Management 2011:31(9–10):1924–1933. doi:10.1016/j.wasman.2011.05.02310.1016/j.wasman.2011.05.02321705207Open DOISearch in Google Scholar

[25] Latvian Environment Geology and Meteorology Center. Summary of the National Statistical Report No.3 - Waste - Overview of Waste for 2017. Riga: LVGMC, 2018.Search in Google Scholar

[26] Jorissen J., Priefer C., Bräutigam K. R. Food waste generation at household level: results of a survey among employees of two European research centers in Italy and Germany. Sustainability 2015:7(3):2695–2715. doi:10.3390/su703269510.3390/su7032695Open DOISearch in Google Scholar

[27] Elimelech E., Ayalon O., Ert E. What gets measured gets managed: A new method of measuring household food waste. Waste Management 2018:76:68–81. doi:10.1016/j.wasman.2018.03.03110.1016/j.wasman.2018.03.03129576512Open DOISearch in Google Scholar

[28] Nordtest, 1995. Municipal Solid Waste: Sampling and Characterisation (No. NT ENVIR 001), Nordtest Method. Espoo, Finland [Online]. [Accessed 14.02.2019.]. Available: http://www.nordtest.info/index.php/methods/item/solid-waste-municipal-sampling-and-characterisation-nt-envir-001.htmlSearch in Google Scholar

[29] SWA-Tool Consortium, 2004. Methodology for the Analysis of Solid Waste (SWA-Tool). User Version [Online]. [Accessed 14.02.2019.]. Available: https://www.wien.gv.at/meu/fdb/pdf/swa-tool-759-ma48.pdfSearch in Google Scholar

[30] European Committee for Standardization. CEN-CENELEC Management Centre Brussels, Belgium.Search in Google Scholar

[31] LVS EN 15440:2011. Solid recovered fuels - Methods for the determination of biomass content.Search in Google Scholar

[32] Edjabou M. E., et al. Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation. Waste Management 2015:36:12–23. doi:10.1016/j.wasman.2014.11.00910.1016/j.wasman.2014.11.00925483613Open DOISearch in Google Scholar

[33] Abbott D. Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst. John Wiley & Sons, Incorporated, 2014.Search in Google Scholar

[34] Central Bureau of Statistics. Population database. Annual data [Accessed 14.02.2019.]. Available: https://data1.csb.gov.lv/pxweb/en/iedz/iedz__iedzskaits__ikgad/ISG020.px/?rxid=5afa4e1e-94bf-4758-9c96-315f3e9943a9Search in Google Scholar

[35] Lebersorger S., Beigl P. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel. Waste Management 2011:31:9–10. doi:10.1016/j.wasman.2011.05.01610.1016/j.wasman.2011.05.01621689921Open DOISearch in Google Scholar

[36] Makarichi L., Techato K., Jutidamrongphan W. Material flow analysis as a support tool for multi-criteria analysis in solid waste management decision-making. Resources, Conservation and Recycling 2018:139:351–365. doi:10.1016/j.resconrec.2018.07.02410.1016/j.resconrec.2018.07.024Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other