Open Access

Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
Special Issue of Environmental and Climate Technologies Part I: Energy, bioeconomy, climate changes and environment nexus

Cite

[1] The revised Energy Performance of Buildings Directive [Online]. [Accessed 14.02.2019]. Available: https://ec.europa.eu/info/sites/info/files/epbd_factsheet_20180503_dc_v03e_final.pdfSearch in Google Scholar

[2] Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 2010:153:13–35.Search in Google Scholar

[3] Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency. Official Journal of the European Union 2012:315:1–56.Search in Google Scholar

[4] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011Open DOISearch in Google Scholar

[5] Bajcinovci B., Jerliu F. Achieving energy efficiency in accordance with bioclimatic architecture principles. Environmental and Climate Technologies 2016:18(1):54–63. doi:10.1515/rtuect-2016-001310.1515/rtuect-2016-0013Open DOISearch in Google Scholar

[6] Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate change and buildings energy efficiency - The key role of residents. Environmental and Climate Technologies 2016:17(1):30–43. doi:10.1515/rtuect-2016-000410.1515/rtuect-2016-0004Open DOISearch in Google Scholar

[7] Yang L., Yan H., Lam J. C. Thermal comfort and building energy consumption implications–a review. Applied Energy 2014:115:164–173. doi:10.1016/j.apenergy.2013.10.06210.1016/j.apenergy.2013.10.062Open DOISearch in Google Scholar

[8] Zhou D., Zhao C. Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 2012:92:593–605. doi:10.1016/j.apenergy.2011.08.02510.1016/j.apenergy.2011.08.025Search in Google Scholar

[9] Soares N., Costa L. L., Gaspar A. R., Santos P. Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency. Energy and Buildings 2013:59:82–103. doi:10.1016/j.enbuild.2012.12.04210.1016/j.enbuild.2012.12.042Open DOISearch in Google Scholar

[10] Zeinelabdein R., Omer S., Gan G. Critical review of latent heat storage systems for free cooling in buildings. Renewable and Sustainable Energy Reviews 2018:82(3):2843–2868. doi:10.1016/j.rser.2017.10.04610.1016/j.rser.2017.10.046Search in Google Scholar

[11] Du K., Calautit J., Wang Z., Wu Y., Liu H. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied Energy 2018:220:242–273. doi:10.1016/j.apenergy.2018.03.00510.1016/j.apenergy.2018.03.005Open DOISearch in Google Scholar

[12] Sage-Lauck J. S., Sailor D. J. Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building. Energy and Buildings 2014:79:32–40. doi:10.1016/j.enbuild.2014.04.02810.1016/j.enbuild.2014.04.028Open DOISearch in Google Scholar

[13] Alam M., Sanjayan J., Zou P. X. W., Ramakrishnan S., Wilson J. A comparative study on the effectiveness of passive and free cooling application methods of phase change materials for energy efficient retrofitting in residential buildings. Procedia Engineering 2017:180:993–1002. doi:10.1016/j.proeng.2017.04.25910.1016/j.proeng.2017.04.259Open DOISearch in Google Scholar

[14] Meng E., Yu H., Zhou B. Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter. Applied Thermal Engineering 2017:126:212–225. doi:10.1016/j.applthermaleng.2017.07.11010.1016/j.applthermaleng.2017.07.110Open DOISearch in Google Scholar

[15] Wijesuriya S., Brandt M., Tabares-Velasco P. C. Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate. Applied Energy 2018:222:497–514. doi:10.1016/j.apenergy.2018.03.11910.1016/j.apenergy.2018.03.119Open DOISearch in Google Scholar

[16] Lee K. O., Medina M. A., Sun X. Q., Jin X. Thermal performance of phase change materials (PCM) enhanced cellulose insulation in passive solar residential building walls. Solar Energy 2018:163:113–121. doi:10.1016/j.solener.2018.01.08610.1016/j.solener.2018.01.086Open DOISearch in Google Scholar

[17] Vanaga R., Blumberga A., Freimanis R., Mols T., Blumberga D. Solar façade module for nearly zero energy building. Energy 2018:257:1025–1034. doi:10.1016/j.energy.2018.04.16710.1016/j.energy.2018.04.167Open DOISearch in Google Scholar

[18] Medved S., Arkar C. Correlation between the local climate and the free-cooling potential of latent heat storage. Energy and Buildings 2008:40(4):429–437. doi:10.1016/j.enbuild.2007.03.01110.1016/j.enbuild.2007.03.011Open DOISearch in Google Scholar

[19] Stritih U., Butala, V. Energy savings in building with a PCM Free cooling system. Journal of Mechanical Engineering 2011:57:125–134. doi:10.5545/sv-jme.2010.06610.5545/sv-jme.2010.066Open DOISearch in Google Scholar

[20] Weinläder H., Körner W., Strieder B. A ventilated cooling ceiling with integrated latent heat storage – Monitoring results. Energy and Buildings 2014:82:65–72. doi:10.1016/j.enbuild.2014.07.01310.1016/j.enbuild.2014.07.013Open DOISearch in Google Scholar

[21] Osterman E., Butala V., Stritih U. PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy and Buildings 2015:106:125–133. doi:10.1016/j.enbuild.2015.04.01210.1016/j.enbuild.2015.04.012Open DOISearch in Google Scholar

[22] Maccarini A., Hultmark G., Bergsøe N. C., Afshari A. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings. Sustainable Cities and Society 2018:42:384–395. doi:10.1016/j.scs.2018.06.01610.1016/j.scs.2018.06.016Open DOISearch in Google Scholar

[23] Moreno P., Solé C., Castell A., Cabeza L. F. The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review. Renewable and Sustainable Energy Reviews 2014:39:1–13. doi:10.1016/j.rser.2014.07.06210.1016/j.rser.2014.07.062Open DOISearch in Google Scholar

[24] Mazo J., Delgado M., Marin J. M., Zalba B. Modeling a radiant floor system with Phase Change Material (PCM) integrated into a building simulation tool: Analysis of a case study of a floor heating system coupled to a heat pump. Energy and Buildings 2012:47:458–466. doi:10.1016/j.enbuild.2011.12.02210.1016/j.enbuild.2011.12.022Open DOISearch in Google Scholar

[25] Koschenz M., Lehmann B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy and Buildings 2004:36(6):567–578. doi:10.1016/j.enbuild.2004.01.02910.1016/j.enbuild.2004.01.029Open DOISearch in Google Scholar

[26] Tzivanidis C., Antonopoulos K. A., Kravvaritis E. D. Parametric analysis of space cooling systems based on night ceiling cooling with PCM-embedded piping. International Journal of Energy Research 2012:36(1):18–35. doi:10.1002/er.177710.1002/er.1777Open DOISearch in Google Scholar

[27] Zhu N., Ma Z., Wang S. Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Conversion and Management 2009:50(12):3169–3181. doi:10.1016/j.enconman.2009.08.01910.1016/j.enconman.2009.08.019Open DOISearch in Google Scholar

[28] Waqas A., Ud Din Z. Phase change material (PCM) storage for free cooling of buildings—A review. Renewable and Sustainable Energy Reviews 2013:18:607–625. doi:10.1016/j.rser.2012.10.03410.1016/j.rser.2012.10.034Open DOISearch in Google Scholar

[29] Alizadeh M., Sadrameli S. M. Development of free cooling based ventilation technology for buildings: thermal energy storage (TES) unit, performance enhancement techniques and design considerations –a review. Renewable and Sustainable Energy Reviews 2016:58:619–645. doi:10.1016/j.rser.2015.12.16810.1016/j.rser.2015.12.168Open DOISearch in Google Scholar

[30] Baetens R., Jelle B., Gustavsen A. Phase change materials for building applications: a state-of-the-art review. Energy and Buildings 2010:42(9):1361–1368. doi:10.1016/j.enbuild.2010.03.02610.1016/j.enbuild.2010.03.026Open DOISearch in Google Scholar

[31] Sinka M., Korjakins A., Bajare D., Zimele Z., Sahmenko G. Bio-based construction panels for low carbon development. Energy Procedia 2018:147:220–226. doi:10.1016/j.egypro.2018.07.06310.1016/j.egypro.2018.07.063Open DOISearch in Google Scholar

[32] Dembovska L., Bajare D., Pundiene I., Vitola L. Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete. Procedia Engineering 2017:172:202–210. doi:10.1016/j.proeng.2017.02.05010.1016/j.proeng.2017.02.050Open DOISearch in Google Scholar

[33] RT22HC data Sheet [Online]. [Accessed 14.02.2019]. Available: www.rubitherm.eu/media/products/datasheets/Techdata_-RT22HC_EN_06082018.PDFSearch in Google Scholar

[34] Solar calculator [Online]. [Accessed 14.02.2019]. Available: https://meteoexploration.com/products/SolarCalculator.htmlSearch in Google Scholar

[35] Costa M., Buddhi D., Oliva A. Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Conversion and Management 1998:39(3–4):319–330. doi:10.1016/S0196-8904(96)00193-810.1016/S0196-8904(96)00193-8Open DOISearch in Google Scholar

[36] Saffari M., Gracia A., Ushak S., Cabeza L. F. Passive cooling of buildings with phase change materials using whole-building energy simulation tools: a review. Renewable and Sustainable Energy Reviews 2017:80:1239–1255. doi:10.1016/j.rser.2017.05.13910.1016/j.rser.2017.05.139Open DOISearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other