Open Access

Progress in Renewable Energy Technologies: Innovation Potential in Latvia

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
Special Issue of Environmental and Climate Technologies Part I: Energy, bioeconomy, climate changes and environment nexus

Cite

[1] Klavins M., Bisters V., Burlakovs J. Small scale gasification application and perspectives in circular economy. Environmental and Climate Technologies 2018:22:42–54. doi:10.2478/rtuect-2018-000310.2478/rtuect-2018-0003Open DOISearch in Google Scholar

[2] Kittipongvises S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environmental and Climate Technologies 2017:20:67–83. doi:10.1515/rtuect-2017-001110.1515/rtuect-2017-0011Open DOISearch in Google Scholar

[3] Zappa W., Junginger M., Broe M. Is a 100% renewable European power system feasible by 2050? Applied energy 2019:233–234:1027–1050. doi:10.1016/j.apenergy.2018.08.10910.1016/j.apenergy.2018.08.109Open DOISearch in Google Scholar

[4] Kumar A., et al. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews 2017:69:596–609. doi:10.1016/j.rser.2016.11.19110.1016/j.rser.2016.11.191Open DOISearch in Google Scholar

[5] Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union 2009:L140/16.Search in Google Scholar

[6] Eurostat. Renewable energy statistics. Statistics Explained [Online]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statisticsSearch in Google Scholar

[7] European Commission. Report from the commission to the European parliament, the Council, the European economic and social committee and the Committee of the regions. Brussels: European Commission, 2019.Search in Google Scholar

[8] Rogge N. EU countries’ progress towards ‘Europe 2020 strategy targets’. Journal of Policy Modeling 2019:41(2):255–272. doi:10.1016/j.jpolmod.2019.03.00310.1016/j.jpolmod.2019.03.003Search in Google Scholar

[9] Central Statistical Bureau of Latvia. Catalogue of Statistical Publications 2019.Search in Google Scholar

[10] Electricity Market Review by JSC Augstsprieguma tikls [Online]. Available: http://ast.lv/lv/electricity-market-reviewSearch in Google Scholar

[11] IRENA. Renewable capacity statistics 2018. Abu Dhabi: International Renewable Energy Agency (IRENA), 2018.Search in Google Scholar

[12] Krog L., Sperling K. A. comprehensive framework for strategic energy planning based on Danish and international insights. Energy Strategy Reviews 2019:24:83–93. doi:10.1016/j.esr.2019.02.00510.1016/j.esr.2019.02.005Open DOISearch in Google Scholar

[13] Zinck Thellufsen J., Lund H. Cross-border versus cross-sector interconnectivity in renewable energy system. Energy 2017:124:492–501. doi:10.1016/j.energy.2017.02.11210.1016/j.energy.2017.02.112Open DOISearch in Google Scholar

[14] Yang Y., et al. Using multi-criteria analysis to prioritize renewable energy home heating technologies. Sustainable Energy Technologies and Assessments 2018:29:36–43. doi:10.1016/j.seta.2018.06.00510.1016/j.seta.2018.06.005Open DOISearch in Google Scholar

[15] Dansk Arkitektur Center. Green growth in Denmark towards 2050. Four future scenarios. DK 2050.Search in Google Scholar

[16] Bergek A., Mignon I. Motives to adopt renewable electricity technologies: Evidence from Sweden. Energy Policy 2017:106:547–559. doi:10.1016/j.enpol.2017.04.01610.1016/j.enpol.2017.04.016Open DOISearch in Google Scholar

[17] Mahapatra K., Gustavsson L. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden. Energy Policy 2008:36(2):577–590. doi:10.1016/j.enpol.2007.10.00610.1016/j.enpol.2007.10.006Open DOISearch in Google Scholar

[18] Panula-Ontto J., et al. Cross-impact analysis of Finnish electricity system with increased renewables: Long-run energy policy challenges in balancing supply and consumption. Energy Policy 2018:118:504–513. doi:10.1016/j.enpol.2018.04.00910.1016/j.enpol.2018.04.009Open DOISearch in Google Scholar

[19] Jung N., et al. Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland. Renewable Energy 2016:99:813–824. doi:10.1016/j.renene.2016.07.00610.1016/j.renene.2016.07.006Open DOISearch in Google Scholar

[20] Aslani A., Helo O., Naaranoja M. Role of renewable energy policies in energy dependency in Finland: System dynamics approach. Applied Energy 2014:113:758–765. doi:10.1016/j.apenergy.2013.08.01510.1016/j.apenergy.2013.08.015Open DOISearch in Google Scholar

[21] Gaigalis V., Markevicius A., Katinas V., Skema R. Analysis of the renewable energy promotion in Lithuania in compliance with the European Union strategy and policy. Renewable and Sustainable Energy Reviews 2014:35:422–435. doi:10.1016/j.rser.2014.04.01310.1016/j.rser.2014.04.013Open DOISearch in Google Scholar

[22] Zhang C., et al. Probabilistic multi-criteria assessment of renewable micro-generation technologies in households. Journal of Cleaner Production 2019:212:582–592. doi:10.1016/j.jclepro.2018.12.05110.1016/j.jclepro.2018.12.051Open DOISearch in Google Scholar

[23] Valodka I., Valodkienė G. The Impact of Renewable Energy on the Economy of Lithuania. Procedia - Social and Behavioral Sciences 2015:213:123–128. doi:10.1016/j.sbspro.2015.11.41410.1016/j.sbspro.2015.11.414Open DOISearch in Google Scholar

[24] Ligus M., Peternek P. Determination of most suitable low-emission energy technologies development in Poland using integrated fuzzy AHP-TOPSIS method. Energy Procedia 2018:153:101–106. doi:10.1016/j.egypro.2018.10.04610.1016/j.egypro.2018.10.046Open DOISearch in Google Scholar

[25] Paska J., Surma T. Electricity generation from renewable energy sources in Poland. Renewable Energy 2014:71:286–294. doi:10.1016/j.renene.2014.05.01110.1016/j.renene.2014.05.011Open DOISearch in Google Scholar

[26] Polityka energetyczna Polski do roku 2030 (Energy policy of Poland until 2030). Appendix to Resolution no. 202/2009 of the Council of Ministers of 10 November 2009. (in Polish)Search in Google Scholar

[27] Krajowy plan działania w zakresie energii ze zrode ł odnawialnych (National Action Plan for Renewable Energy Sources). Warszawa: Ministerstwo Gospodarki, 2010. (in Polish)Search in Google Scholar

[28] Sowizdza A. Geothermal energy resources in Poland – Overview of the current state of knowledge. Renewable and Sustainable Energy Reviews 2018:82(3):4020–4027. doi:10.1016/j.rser.2017.10.07010.1016/j.rser.2017.10.070Open DOISearch in Google Scholar

[29] Kępińska B. Geothermal energy use – country update for Poland, 2013–2015. Proceeding European geothermal congress 2016, Strasbourg, France, 2016.Search in Google Scholar

[30] Ligus M. Evaluation of economic, social and environmental effects of low-emission energy technologies development in Poland: a multi-criteria analysis with application of a fuzzy analytic hierarchy process (FAHP). Energies 2017:10(10):1550. doi:10.3390/en1010155010.3390/en10101550Search in Google Scholar

[31] Bórawski P., et al. Development of renewable energy sources market and biofuels in the European union. Accepted manuscript. Journal of Cleaner Production 2019:228:467–484. doi:10.1016/j.jclepro.2019.04.24210.1016/j.jclepro.2019.04.242Open DOISearch in Google Scholar

[32] Karatasou S, Laskari M, Santamouris M. Models of behavior change and residential energy use: a review of research directions and findings for behavior-based energy efficiency. Advances in Building Energy Research 2014:8(2):137–147. doi:10.1080/17512549.2013.80927510.1080/17512549.2013.809275Open DOISearch in Google Scholar

[33] Sengül U., et al. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable energy 2015:75:617–625. doi:10.1016/j.renene.2014.10.04510.1016/j.renene.2014.10.045Open DOISearch in Google Scholar

[34] Hwang C. L., Yoon K. P. Multiple attribute decision making: Methods and applications. Springer, 1981.10.1007/978-3-642-48318-9Search in Google Scholar

[35] Wang J., Jing Y., Zhang C., Zhao J. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 2009:13(9):2263–2278. doi:10.1016/j.rser.2009.06.02110.1016/j.rser.2009.06.021Open DOISearch in Google Scholar

[36] IRENA, Renewable Power generation Costs in 2017. AbuDhabi: International Renewable Energy Agency (IRENA), 2018.Search in Google Scholar

[37] Lauka D. Sustainability analysis of renewable energy sources. Riga: RTU Press, 2018.Search in Google Scholar

[38] Sianaki O. A. Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid. School of Information Systems. Curtin: Curtin Business School, 2015.Search in Google Scholar

[39] Mezősi A., Szabó L., Szabó S. Cost-efficiency benchmarking of European renewable electricity support schemes. Renewable and Sustainable Energy reviews 2018:98:217–226. doi:10.1016/j.rser.2018.09.00110.1016/j.rser.2018.09.001Open DOISearch in Google Scholar

[40] Lauka D., Barisa A., Blumberga D. Assessment of the availability and utilization potential of low-quality biomass in Latvia. Energy Procedia 2018:147:518–524. doi:10.1016/j.egypro.2018.07.06510.1016/j.egypro.2018.07.065Open DOISearch in Google Scholar

[41] European Commission. First estimates of Research & Development expenditure “R&D expenditure in the EU increased slightly to 2.07% of GDP in 2017. Brussels: European Commission, 2019.Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other