Open Access

Application of Tropospheric Sulfate Aerosol Emissions to Mitigate Meteorological Phenomena with Extremely High Daily Temperatures


Cite

[1] Haywood J., Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics 2000:38(4):513−543. doi:10.1029/1999RG00007810.1029/1999RG000078Open DOISearch in Google Scholar

[2] Deshler T. A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmospheric Research 2008:90(2−4):223−232. doi:10.1016/j.atmosres.2008.03.01610.1016/j.atmosres.2008.03.016Open DOISearch in Google Scholar

[3] Gu Y., Liou K. N., Chen W., Liao H. Direct climate effect of black carbon in China and its impact on dust storms. Journal of Geophysical Research 2010:115:D00K14. doi:10.1029/2009JD01342710.1029/2009JD013427Open DOISearch in Google Scholar

[4] Papadimas C. D., et al. The direct effect of aerosols on solar radiation over the broader Mediterranean basin. Atmospheric Chemistry and Physics 2012:12(15):7165−7185. doi:10.5194/acp−12−7165−201210.5194/acp1271652012Open DOISearch in Google Scholar

[5] Hansen J., Sato M., Ruedy R. Radiative forcing and climate response. Journal of Geophysical Research. 1997:102(D6):6831−6864. doi:10.1029/96JD0343610.1029/96JD03436Open DOISearch in Google Scholar

[6] Schell B., Ackermann I. J., Hass H., Binkowski F. S., Ebel A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. Journal of Geophysical Research: Atmospheres 2001:106(D22):28275−28293. doi:10.1029/2001JD00038410.1029/2001JD000384Open DOISearch in Google Scholar

[7] Liou K.-N., Ou S.-C. The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. Journal of Geophysical Research: Atmospheres 1989:94(D6):8599−8607. doi:10.1029/JD094iD06p0859910.1029/JD094iD06p08599Open DOISearch in Google Scholar

[8] Rosenfeld D. Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science 2000:287(5459):1793−1796. doi:10.1126/science.287.5459.179310.1126/science.287.5459.1793Search in Google Scholar

[9] Borys R. D., Lowenthal D. H., Mitchell D. L. The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmospheric Environment 2000:34(16):2593−2602. doi:10.1016/S1352−2310(99)00492−610.1016/S13522310(99)004926Open DOISearch in Google Scholar

[10] Shepherd J. M., Burian S. J. Detection of Urban-Induced Rainfall Anomalies in a Major Coastal City. Earth Interactions 2003:7(4):1−17. doi:10.1175/1087−3562(2003)007%3c0001:DOUIRA%3e2.0.CO;2Search in Google Scholar

[11] Cullis C. F., Hirschler M. M. Atmospheric sulphur: Natural and man−made sources. Atmospheric Environment 1980:14(11):1263−1278. doi:10.1016/0004−6981(80)90228−010.1016/00046981(80)902280Open DOISearch in Google Scholar

[12] Penner J. E., Lister D., Griggs D. J., McFarland M., Dokken D. J. Aviation and the global atmosphere: a special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1999.Search in Google Scholar

[13] Günther A., et al. MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere. Atmospheric Chemistry and Physics 2018:18(2):1217−1239. doi:10.5194/acp−2017−53810.5194/acp2017538Open DOISearch in Google Scholar

[14] Pitari G., et al. Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere. Atmosphere 2016:7(7):85. https://doi.org/10.3390/atmos707008510.3390/atmos7070085Open DOISearch in Google Scholar

[15] Stenchikov G. L., et al. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research: Atmospheres 1998:103(D12):13837−13857. doi:10.1029/98JD0069310.1029/98JD00693Open DOISearch in Google Scholar

[16] Charlson R. J., et al. Climate forcing by anthropogenic aerosols. Science 1992:255(5043):423–30. doi:10.1126/science.255.5043.42310.1126/.255.5043.423Open DOISearch in Google Scholar

[17] Kiehl J. T., Briegleb B. P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 1993:260(5106):311−4. doi:10.1126/science.260.5106.31110.1126/.260.5106.311Open DOISearch in Google Scholar

[18] Jiandong L., Jiangyu M., Wei-Chyung W. Anthropogenic Eastern Asian radiative forcing due to sulfate and black carbon aerosols and their time evolution estimated by an AGCM. Chinese Journal of Geophysics 2015:58(4):1103–1120.Search in Google Scholar

[19] McCormick M. P., Thomason L. W., Trepte C. R. Atmospheric effects of the Mt Pinatubo eruption. Nature 1995:373(6513):399–404. doi:10.1038/373399a010.1038/373399a0Open DOISearch in Google Scholar

[20] Michelangeli D. V., Allen M., Yung Y. L. El Chichon volcanic aerosols: Impact of radiative, thermal, and chemical perturbations. Journal of Geophysical Research 1989:94(D15):18429. doi:10.1029/JD094iD15p1842910.1029/JD094iD15p1842911542195Open DOISearch in Google Scholar

[21] Boucher O., et al. Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013:571–657.Search in Google Scholar

[22] Jones A., Roberts L., Wood J., Johnson C. E. Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. Journal of Geophysical Research: Atmospheres 2001:106(D17):293−313. doi:10.1029/2000JD00008910.1029/2000JD000089Open DOISearch in Google Scholar

[23] Trenberth K., Dai A. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters 2007:34(15). doi:10.1029/2007GL03052410.1029/2007GL030524Open DOISearch in Google Scholar

[24] Friberg J., et al. Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds. Earth and Space Science 2015:2(7):285−300. doi:10.1002/2015EA00011010.1002/2015EA000110Open DOISearch in Google Scholar

[25] Ramanathan V., Carmichael G. Global and regional climate changes due to black carbon. Nature Geoscience 2008:1(4):221−227. doi:10.1038/ngeo15610.1038/ngeo156Open DOISearch in Google Scholar

[26] Forster P., et al. Climate Change 2007: The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.Search in Google Scholar

[27] Shindell D., Faluvegi G. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience 2009:2(4):294−300. doi:10.1038/ngeo47310.1038/ngeo473Open DOISearch in Google Scholar

[28] Giorgi F., Bi X., Qian Y. Indirect vs. Direct Effects of Anthropogenic Sulfate on the Climate of East Asia as Simulated with a Regional Coupled Climate-Chemistry/Aerosol Model. Climatic Change 2003:58(3):345−376. doi:10.1023/A:102394601035010.1023/A:1023946010350Open DOISearch in Google Scholar

[29] Giorgi F., Bi X., Qian Y. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study. Journal of Geophysical Research: Atmospheres 2002:107(D20):AAC−7. doi:10.1029/2001JD00106610.1029/2001JD001066Open DOISearch in Google Scholar

[30] Qian Y., Giorgi F. Regional climatic effects of anthropogenic aerosols? The case of southwestern China. Geophysical Research Letters 2000:27(21):3521−3524. doi:10.1029/2000GL01194210.1029/2000GL011942Open DOISearch in Google Scholar

[31] Wu J., Luo Y., Wang W. The comparison of different simulation methods for the climate responses of the radiative forcing of anthropogenic sulfate aerosol over east Asia. Journal of Yunnan University 2005:27(4):323−331.Search in Google Scholar

[32] Ekman A. M. L., Rodhe H. Regional temperature response due to indirect sulfate aerosol forcing: impact of model resolution. Climate Dynamics 2003:21(1):1−10. doi:10.1007/s00382−003−0311−y10.1007/s003820030311yOpen DOISearch in Google Scholar

[33] Foote G. B., Knight C. A. Results of a Randomized Hail Suppression Experiment in Northeast Colorado. Part I: Design and Conduct of the Experiment. Journal of Applied Meteorology 1979:18(12):1526–1537. doi:10.1175/1520−0450(1979)018%3c1526:ROARHS%3e2.0.CO;210.1175/15200450(1979)018%3c1526:ROARHS%3e2.0.CO;2Open DOISearch in Google Scholar

[34] García-Ortega E., López L., Sánchez J. L. Diagnosis and sensitivity study of two severe storm events in the Southeastern Andes. Atmospheric research 2009:93(1−3):161−178. doi:10.1016/j.atmosres.2008.10.03010.1016/j.atmosres.2008.10.030Open DOISearch in Google Scholar

[35] Silverman B. A. A Critical Assessment of Glaciogenic Seeding of Convective Clouds for Rainfall Enhancement. Bulletin of the American Meteorological Society 2001:82(5):903−923. doi:10.1175/1520−0477(2001)082%3c0903:ACAOGS%3e2.3.CO;210.1175/15200477(2001)082%3c0903:ACAOGS%3e2.3.CO;2Open DOISearch in Google Scholar

[36] Miao Q., Geerts B. Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation. Advances in Atmospheric Sciences 2013:30(4):1025−1038. doi:10.1007/s00376-012-2128-210.1007/s00376-012-2128-2Open DOISearch in Google Scholar

[37] Rasch P., et al. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2008:366(1882):4007−4037. doi:10.1098/rsta.2008.013110.1098/rsta.2008.013118757276Open DOISearch in Google Scholar

[38] Crutzen P. J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change 2006:77(3−4):211−220. doi:10.1007/s10584−006−9101−y10.1007/s105840069101yOpen DOISearch in Google Scholar

[39] Groisman P. Possible regional climate consequences of the Pinatubo eruption: an empirical approach. Geophysical Research Letters 1992:19(15):1603−1606. doi:10.1029/92GL0147410.1029/92GL01474Open DOISearch in Google Scholar

[40] Kirchner I., Stenchikov G. L., Graf H.-F., Robock A., Antuña J. C. Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. Journal of Geophysical Research 1999:104(D16):19039−19055. doi:10.1029/1999JD9002110.1029/1999JD90021Open DOISearch in Google Scholar

[41] Govindasamy B., Caldeira K. Geoengineering Earth’s radiation balance to mitigate CO2 induced climate change. Geophysical Research Letters 2000:27(14):2141−2144. doi:10.1029/1999GL00608610.1029/1999GL006086Open DOISearch in Google Scholar

[42] Keith D. W. Photophoretic levitation of engineered aerosols for geoengineering. Proceedings of the National Academy of Sciences 2010:107(38):16428−16431. doi:10.1073/pnas.100951910710.1073/pnas.1009519107294471420823254Open DOISearch in Google Scholar

[43] Aquila V., Garfinkel C. I., Newman P. A., Oman L. D., Waugh D. W. Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophysical Research Letters 2014:41(5):1738−1744. doi:10.1002/2013GL0588110.1002/2013GL05881Open DOISearch in Google Scholar

[44] Pitari G., et al. Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres 2014:119(5):2629−2653. doi:10.1002/2013JD02056610.1002/2013JD020566Open DOISearch in Google Scholar

[45] Kravitz B., Robock A., Boucher O., Schmidt H., Taylor K. E., Stenchikov G., Schulz M. The geoengineering model intercomparison project (GeoMIP). Atmospheric Science Letters 2011:12(2):162−167. doi:10.1002/asl.31610.1002/asl.316Open DOISearch in Google Scholar

[46] MacMartin D. G., et al. The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations. Journal of Geophysical Research: Atmospheres 2017:122(23):12−574. doi:10.1002/2017JD0268710.1002/2017JD02687Open DOISearch in Google Scholar

[47] Tilmes S., et al. Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations. Journal of Geophysical Research: Atmospheres 2017:122(23):12591−12615. doi:10.1002/2017JD02688810.1002/2017JD026888Open DOISearch in Google Scholar

[48] Laakso A., Korhonen H., Romakkaniemi S., Kokkola H. Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas. Atmospheric Chemistry and Physics 2017:17(11):6957. doi:0.5194/acp−2017−10710.5194/acp-17-6957-2017Search in Google Scholar

[49] Rasch P., Crutzen J., Coleman B. Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size. Geophysical Research Letters 2008:35(2). doi:10.1029/2007GL03217910.1029/2007GL032179Open DOISearch in Google Scholar

[50] Heckendorn P., et al. The impact of geoengineering aerosols on stratospheric temperature and ozone. Environmental Research Letters 2009:4(4):045108. doi:10.1088/1748−9326/4/4/045108Search in Google Scholar

[51] Niemeier U., Timmreck C., Graf H.-F., Kinne S., Rast S., Self S. Initial fate of fine ash and sulfur from large volcanic eruptions. Atmospheric Chemistry and Physics 2009:9(22):9043–9057. doi:10.5194/acp−9−9043−200910.5194/acp990432009Open DOISearch in Google Scholar

[52] Pierce J. R., et al. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophysical Research Letters 2010:37(18). doi:10.1029/2010GL04397510.1029/2010GL043975Open DOISearch in Google Scholar

[53] Vattioni S., Weisenstein D., Keith D., Feinberg A., Peter T., Stenke A. Exploring accumulation-mode-H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol-chemistry-climate model. Atmospheric Chemistry and Physics Discussions 2018:1−30. doi:10.5194/acp−2018−107010.5194/acp20181070Open DOISearch in Google Scholar

[54] English J. M., Toon O. B., Mills M. J. Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmospheric Chemistry and Physics 2012:12(10):4775−4793. doi:10.5194/acp−12−4775−2012Search in Google Scholar

[55] Visioni D., Pitari G., Tuccella P., Curci G. Sulfur deposition changes under sulfate geoengineering conditions: Quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols. Atmospheric Chemistry and Physics 2018:18(4):2787−2808. doi:10.5194/acp−18−2787−201810.5194/acp1827872018Open DOISearch in Google Scholar

[56] Bernstein D. N., Neelin J. D., Li Q. B., Chen D. Could aerosol emissions be used for regional heat wave mitigation? Atmospheric Chemistry and Physics 2013:13(13):6373−6390.10.5194/acp-13-6373-2013Search in Google Scholar

[57] Grell G. A., et al. Fully coupled “online” chemistry within the WRF model. Atmospheric Environment 2005:39(37):6957−6975. doi:10.1016/j.atmosenv.2005.04.02710.1016/j.atmosenv.2005.04.027Open DOISearch in Google Scholar

[58] Skamarock W. C., et al. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN−475+STR. Boulder: NSCAR, 2008. doi:10.5065/D68S4MVH10.5065/D68S4MVHOpen DOISearch in Google Scholar

[59] Sánchez J. L., López L., García-Ortega E., Gil B. Nowcasting of kinetic energy of hail precipitation using radar. Atmospheric Research 2013:123:48−60. doi:10.1016/j.atmosres.2012.07.02110.1016/j.atmosres.2012.07.021Open DOISearch in Google Scholar

[60] Zanobetti A., O’Neill M. S., Gronlund C. J., Schwartz J. D. Susceptibility to mortality in weather extremes: effect modification by personal and small-area characteristics. Epidemiology 2013:24(6):809−19. doi:10.1097/01.ede.0000434432.06765.9110.1097/01.ede.0000434432.06765.91430420724045717Open DOISearch in Google Scholar

[61] Ciais P., et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005:437(7058):529−33. doi:10.1038/nature0397210.1038/03972Open DOISearch in Google Scholar

[62] Toomey M., Roberts D. A., Still C., Goulden M. L., McFadden J. P. Remotely sensed heat anomalies linked with Amazonian forest biomass declines. Geophysical Research Letters 2011:38(19). doi:10.1029/2011GL04904110.1029/2011GL049041Open DOISearch in Google Scholar

[63] Smoyer-Tomic K. E., Kuhn R., Hudson A. Heat Wave Hazards: An Overview of Heat Wave Impacts in Canada. Natural Hazards 2003:28(2−3):465−486. doi:10.1023/A:102294652815710.1023/A:1022946528157Open DOISearch in Google Scholar

[64] Roper R. E. Book Review of Heat Wave: A Social Autopsy of Disaster in Chicago by E. Klinenberg. The American Journal of Sociology 2003:108(5):1114−1115.10.1086/379563Search in Google Scholar

[65] Jolly W. M., Dobbertin M., Zimmermann N. E., Reichstein M. Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophysical Research Letters 2005:32(18). doi:10.1029/2005GL02325210.1029/2005GL023252Open DOISearch in Google Scholar

[66] Theoharatos G., Pantavou K., Mavrakis A., Spanou A., Katavoutas G., Efstathiou P., Mpekas P., Asimakopoulos D. Heat waves observed in 2007 in Athens, Greece: synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental research 2010:110(2):152−61. doi:10.1016/j.envres.2009.12.00210.1016/j.envres.2009.12.00220060520Open DOISearch in Google Scholar

[67] Rusticucci M., Kyselý J., Almeira G., Lhotka O. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theoretical and Applied Climatology 2015:124(3−4):679−689.10.1007/s00704-015-1445-7Search in Google Scholar

[68] Cerne S. B., Vera C. S., Liebmann B. The Nature of a Heat Wave in Eastern Argentina Occurring during SALLJEX. Monthly Weather Review 2007:135(3):1165−1174. doi:10.1175/MWR3306.110.1175/MWR3306.1Open DOISearch in Google Scholar

[69] Norte F. A., Seluchi M. E., Gomes J. L., Simonelli S. C. Analysis of an extreme heat wave over the subtropical region of South America. Revista Brasileira de Meteorologia 2007:22(3):373–386. doi.org/10.1590/S0102-7786200700030001010.1590/S0102-77862007000300010Open DOISearch in Google Scholar

[70] Ente Provincial Regulador Eléctrico. Evolución de la demanda de electricidad de Mendoza ante la ola de calor-Última semana 2011 y comienzos 2012, 2011. Available: http://epremendoza.gov.ar/_a_adjuntos/Evol_Demanda_Ola_Calor_2011_2012.pdfSearch in Google Scholar

[71] Flores G.E., Gómez R.S. Taxonomía y biogeografía de cuatro especies de Psectrascelis (Coleoptera: Tenebrionidae) de la Precordillera y Cordillera de los Andes en Mendoza, Argentina. Revista de la Sociedad Entomológica Argentina. 2005:64(3):93−106.Search in Google Scholar

[72] U.S. Department of Commerce. National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Physical Sciences Division. Daily Climate Composites. Available: https://www.esrl.noaa.gov/psd/data/composites/day/Search in Google Scholar

[73] National Center for Atmospheric Research. Historical Unidata Internet Data Distribution Gridded Model Data, 2003. doi:10.5065/549X-KE8910.5065/549X-KE89Open DOISearch in Google Scholar

[74] Almanza V. H., Molina L. T., Li G., Fast J., Sosa G. Impact of external industrial sources on the regional and local SO2 and O3 levels of the Mexico megacity. Atmospheric Chemistry and Physics 2014:14(16):8483–8499. doi:10.5194/acp−14−8483−201410.5194/acp1484832014Open DOISearch in Google Scholar

[75] Chapman E. G., et al. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmospheric Chemistry and Physics 2009:9(3):945–964. doi:10.5194/acp−9−945−200910.5194/acp99452009Open DOISearch in Google Scholar

[76] Misenis C., Zhang Y. An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmospheric Research 2010:97(3):315–334. doi:10.1016/j.atmosres.2010.04.00510.1016/j.atmosres.2010.04.005Open DOISearch in Google Scholar

[77] Mulena G. C., Allende D. G., Puliafito S. E., Lakkis S. G., Cremades P. G., Ulke A. G. Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling. Atmospheric Research 2016:176–177:29–42. doi:10.1016/j.atmosres.2016.02.00910.1016/j.atmosres.2016.02.009Open DOISearch in Google Scholar

[78] Carvalho D., Rocha A., Gómez-Gesteira M. Ocean surface wind simulation forced by different reanalyses: Comparison with observed data along the Iberian Peninsula coast. Ocean Modelling 2012:56:31–42. doi:10.1016/j.ocemod.2012.08.00210.1016/j.ocemod.2012.08.002Open DOISearch in Google Scholar

[79] Borge R., Alexandrov V., Josedelvas J., Lumbreras J., Rodriguez E. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmospheric Environment 2008:42(37):8560–8574. doi:10.1016/j.atmosenv.2008.08.03210.1016/j.atmosenv.2008.08.032Open DOISearch in Google Scholar

[80] Stockwell W. R., Middleton P., Chang J. S., Tang X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research 1990:95(D10):16343. doi:10.1029/JD095iD10p1634310.1029/JD095iD10p16343Search in Google Scholar

[81] Ackermann I. J., Hass H., Memmesheimer M., Ebel A., Binkowski F. S., Shankar U. Modal aerosol dynamics model for Europe: development and first applications. Atmospheric Environment 1998:32(17):2981–2999. doi.org/10.1016/S1352-2310(98)00006-510.1016/S1352-2310(98)00006-5Open DOISearch in Google Scholar

[82] Max Planck Institute for Meteorology. REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO). A long-term global modeling study of tropospheric chemistry funded under the 5th EU framework programme. Report no. 48/2007 of the Max Planck Institute for Meteorology, 2007.Search in Google Scholar

[83] Olivier J. G. J., et al. Applications of Emission Database for Global Atmospheric Research (EDGAR). Including a description of EDGAR 3.2. Reference database with trend data for 1970−1995. INIS 2002:33(45).Search in Google Scholar

[84] National Emissions Inventory (NEI). United States Environmental Protection Agency (U.S. EPA). Available: https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-neiSearch in Google Scholar

[85] Ginoux P., Chin M., Tegen I., Prospero J. M., Holben B., Dubovik O., Lin S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research 2001:106(D17):20255. doi:10.1029/2000JD00005310.1029/2000JD000053Open DOISearch in Google Scholar

[86] Guenther A., Karl T., Harley P., Wiedinmyer C., Palmer P. I., Geron C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics 2006:6(11):3181–3210. doi.org/10.5194/acp-6-3181-200610.5194/acp-6-3181-2006Open DOISearch in Google Scholar

[87] Seinfeld J. H., Pandis S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edition. NY: Wiley, 2006.Search in Google Scholar

[88] Kravitz B., Robock A., Oman L., Stenchikov G., Marquardt A. B. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. Journal of Geophysical Research 2009:114(D14):D14109. doi:10.1029/2009JD01191810.1029/2009JD011918Open DOISearch in Google Scholar

[89] Eastham S. D., Weisenstein D. K., Keith D. W., Barrett S. R. H. Quantifying the impact of sulfate geoengineering on mortality from air quality and UV-B exposure. Atmospheric Environment 2018:187:424–434. doi:10.1016/J.ATMOSENV.2018.05.04710.1016/J.ATMOSENV.2018.05.047Open DOISearch in Google Scholar

[90] Visioni D., Pitari G., Aquila V. Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide. Atmospheric Chemistry and Physics 2017:17(6):3879–3889. doi:10.5194/acp-17-3879-201710.5194/acp-17-3879-2017Open DOISearch in Google Scholar

[91] Zaveri R. A., Easter R. C., Fast J. D., Peters L. K. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Journal of Geophysical Research 2008:113(D13):D13204. doi:10.1029/2007JD00878210.1029/2007JD008782Open DOISearch in Google Scholar

[92] Zhang Y., Seigneur C., Seinfeld J. H., Jacobson M. Z., Binkowski F. S. Simulation of Aerosol Dynamics: A Comparative Review of Algorithms Used in Air Quality Models. Aerosol Science and Technology 1999:31(6):487–514. doi:10.1080/02786829930403910.1080/027868299304039Open DOISearch in Google Scholar

[93] Zhang Y., He J., Zhu S., Gantt B. Sensitivity of simulated chemical concentrations and aerosol-meteorology interactions to aerosol treatments and biogenic organic emissions in WRF/Chem. Journal of Geophysical Research: Atmospheres 2016:121(10):6014–6048. doi:10.1002/2016JD02488210.1002/2016JD024882Search in Google Scholar

[94] Georgiou G. K., Christoudias T., Proestos Y., Kushta J., Hadjinicolaou P., Lelieveld J. Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison. Atmospheric Chemistry and Physics 2018:18(3):1555–1571. doi.org/10.5194/acp-18-1555-201810.5194/acp-18-1555-2018Open DOISearch in Google Scholar

[95] The Royal Society. Geoengineering the climate: Science, governance and uncertainty. London: Royal Society, 2009.Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other