Open Access

Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability


Cite

[1] FAO. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. Rome, 2016.Search in Google Scholar

[2] FAO. FishStatJ: a tool for fishery statistics analysis, Release 3.0.0. Universal software for fishery statistical time series. Global capture and aquaculture production: Quantities 1950-2014; Aquaculture values 1984-2014. Rome, 2016.Search in Google Scholar

[3] The Marine Ingredients Organisation. Is aquaculture growth putting pressure on feed fish stocks? And is the growth of aquaculture being restricted by finite supplies of fishmeal and fish? IFFO, 2013.Search in Google Scholar

[4] Tocher D. R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015:449:94-107. doi:10.1016/j.aquaculture.2015.01.010Search in Google Scholar

[5] Tacon A. G. J., Metian M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Reviews in Fisheries Science & Aquaculture 2015:23(1):1-10. doi:10.1080/23308249.2014.987209Search in Google Scholar

[6] Guy A. Overfishing and El Niño Push the World’s Biggest Single-Species Fishery to a Critical Point. Oceana; 2016.Search in Google Scholar

[7] Iwamoto T., Eschmeyer W., Alvarado J. Engraulis ringens. The IUCN Red List of Threatened Species 2010. doi:10.2305/IUCN.UK.2010-3.RLTS.T183775A8174811.en.Search in Google Scholar

[8] Shepherd J., Bachis E. Changing supply and demand for fish oil. Aquaculture Economics & Management 2014:18:395-416. doi:10.1080/13657305.2014.959212Search in Google Scholar

[9] Finco A. M. O., Mamani L. D. G., Carvalho J. C., Pereira G. V. M., Soccol V. T., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656-671. doi:10.1080/07388551.2016.1213221Search in Google Scholar

[10] Grand View Research. Global fish oil market analysis and segment forecasts to 2020; 2014.Search in Google Scholar

[11] Ivanovs K. Pike Esox Lucius Distribution and Feeding Comparisons in Natural and Historically Channelized River Sections. Environmental and Climate Technologies 2016:18:33-41. doi:10.1515/rtuect-2016-0011Search in Google Scholar

[12] Dunbar B. S., Bosire R. V., Deckelbaum R. J. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Molecular and Cellular Endocrinology 2014:398:69-77. doi:10.1016/j.mce.2014.10.009Search in Google Scholar

[13] Patterson E., Wall R., Fitzgerald G. F., Ross R. P., Stanton C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012:2012:1-17.10.1155/2012/539426333525722570770Search in Google Scholar

[14] FAO. Fish oil - January 2013.Search in Google Scholar

[15] Martins D. A., Custodio L., Barreira L., Pereira H., Ben-Hamadou R., Varela J., Abu-Salah K. M. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 2013:11:2259-2281. doi:10.3390/md11072259Search in Google Scholar

[16] Bolonina A., Comoglio C., Calles O., Kunickis M. Strategies for mitigating the impact of hydropower plants on the stocks of diadromous species in the Daugava River. Energy Procedia 2016:95:81-88. doi:10.1016/j.egypro.2016.09.027Search in Google Scholar

[17] Kitessa S. M., Abeywardena M., Wijesundera C., Nichols P. D. DHA-containing oilseed: A timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients 2014:6:2035-2058. doi:10.3390/nu6052035Search in Google Scholar

[18] Bibus D. M. Long-chain omega-3 from low-trophiclevel fish provides value to farmed seafood. Lipid Technol. 2015:27:55-58. doi:10.1002/lite.201500006Search in Google Scholar

[19] Adarme-Vega T. C., Thomas-Hall S. R., Schenk P. M. Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol. 2014:26:14-18. doi:10.1016/j.copbio.2013.08.003Search in Google Scholar

[20] Caruso G. Use of Plant Products as Candidate Fish Meal Substitutes: An Emerging Issue in Aquaculture Productions. Fish Aquac J. 2015:6:e123. doi:10.4172/2150-3508.1000e123Search in Google Scholar

[21] Francis G., Makkar H. P. S., Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001:199(3-4):197-227. doi:10.1016/S0044-8486(01)00526-9Search in Google Scholar

[22] Spinelli J. FAO. Fish Feed Technology. Chapter 12. Unconventional Feed Ingredients for Fish Feed. Washington: National Marine Fisheries Services, 1980.Search in Google Scholar

[23] Alriksson B., Hornberg A., Gudnason A. E., Knobloch S., Arnason J., Johannsson R. Fish feed from wood. Cellulose Chemestry and Technology 2014:48(9-10):843-848.Search in Google Scholar

[24] Ferreira J. A., Lennartsson P. R., Niklasson C., Lundin M., Edebo L., Taherzadeh M. J. Production of Rhizopussp. from SSL. BioResources 2012:7(1):173-188.Search in Google Scholar

[25] Spalvins S., Ivanovs K., Blumberga D. Single cell protein production from waste biomass: review of various agricultural by-products. Agronomy Research 2018:16(S2):1493-1508. doi:10.15159/AR.18.129Search in Google Scholar

[26] Spalvins S., Zihare L., Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia 2018:147:409-418. doi:10.1016/j.egypro.2018.07.111Search in Google Scholar

[27] Ruiz-Lopez N., Usher S., Sayanova O. V., Napier J. A., Haslam R. P. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol. 2015:99:143-154. doi:10.1007/s00253-014-6217-2Search in Google Scholar

[28] Monroig O., Navarro J. C., Tocher D. R. Long-chain poly-unsaturated fatty acids in fish: recent advances on desaturases and elongases involved in their biosynthesis. Paper presented at Av. en Nutr. Acuıcola XI - Memorias del Decimo Prim. Simp. Int. Nutr. Acuıcola, 2011.Search in Google Scholar

[29] Donot F., Fontana A., Baccou J. C., Strub C., Schorr-Galindo S. Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 2014:68:135-150. doi:10.1016/j.biombioe.2014.06.016Search in Google Scholar

[30] Napier J. A., Usher S., Haslam R. P., Ruiz-Lopez N., Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur J Lipid Sci Technol. 2015:117:1317-1324. doi:10.1002/ejlt.201400452Search in Google Scholar

[31] Hoffmann M., Wagner M., Abbadi A., Fulda M., Feussner I. Metabolic engineering of omega-3 very long chain polyunsaturated fatty acid production by an exclusively. J Biol Chem. 2008; 283:22352-22362. doi:10.1074/jbc.M802377200Search in Google Scholar

[32] Qi B., Fraser T., Mugford S., Dobson G., Sayanova O., Butler J., Napier J. A., Stobart A. K., Lazarus C. M. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol. 2004:22:739-745. doi:10.1038/nbt972Search in Google Scholar

[33] Petrie J. R., Shrestha P., Belide S., Kennedy Y., Lester G., Liu Q., Divi U. K., Mulder R. J., Mansour M. P., Nichols P. D., Singh S. P. Metabolic Engineering Camelina sativa with Fish Oil-Like Levels of DHA. PLoS One 2014:9:8. doi:10.1371/journal.pone.0085061Search in Google Scholar

[34] Funk C., Rainie L. Public and Scientists' Views on Science and Society. Pew Research Center, 2015.Search in Google Scholar

[35] Marris C. Public views on GMOs: deconstructing the myths. EMBO Reports 2001:2:545-548. doi:10.1093/embo-reports/kve142Search in Google Scholar

[36] Commission of European Communities. Public Perceptions of Agricultural Biotechnologies in Europe. Final Report of the PABE research project, 2001.Search in Google Scholar

[37] Scott S. E., Inbar Y., Rozin P. Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States. Perspectives on Psychological Science 2016:11(3):315-324. doi:10.1177/1745691615621275Search in Google Scholar

[38] Library of Congress. Restrictions on Genetically Modified Organisms, 2015.Search in Google Scholar

[39] Bashshur R. FDA and Regulation of GMOs. American Bar Association; 2013.Search in Google Scholar

[40] Sifferlin A. Over Half of E.U. Countries Are Opting Out of GMOs. Time 2015.Search in Google Scholar

[41] Lynch D., Vogel D. The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics. Council on Foreign Relations, 2001.Search in Google Scholar

[42] Innis S. M. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008:1237:35-43. doi:10.1016/j.brainres.2008.08.078Search in Google Scholar

[43] Sinclair A. J., Jayasooriya A. Nutritional aspects of single cell oils: applications of arachidonic acid and docosahexaenoic acid oils. Single cell oils. Champaign (IL): Elsevier, 2010. doi:10.1016/B978-1-893997-73-8.50020-7Search in Google Scholar

[44] Collins C. T., Makrides M., Gibson R. A., McPhee A. J., Davis P. G., Doyle L. W., Simmer K., Colditz P. B., Morris S., Sullivan T. R., Ryan P. Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial. Br J Nutr. 2011:105:1635-1643. doi:10.1017/S000711451000509XSearch in Google Scholar

[45] Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL 2013:20:D602. doi:10.1051/ocl/2013029Search in Google Scholar

[46] Dewapriya P., Kim S. K. Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res Int. 2014:56:115-125. doi:10.1016/j.foodres.2013.12.022Search in Google Scholar

[47] Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M. Biodiesel production from oleaginous microorganisms. Renew Energy 2009:34:1-5. doi:10.1016/j.renene.2008.04.014Search in Google Scholar

[48] Ratledge C., Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 2008:20:155-160. doi:10.1002/lite.200800044Search in Google Scholar

[49] Ward O. P., Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005:40:3627-3652. doi:10.1016/j.procbio.2005.02.020Search in Google Scholar

[50] Garay L. A., Boundy-Mills K. L., German J. B. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem. 2014:62:2709-2727. doi:10.1021/jf4042134Search in Google Scholar

[51] Huang C., Chen X., Xiong L., Chen X., Ma L., Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv. 2013:31:129-139. doi:10.1016/j.biotechadv.2012.08.010Search in Google Scholar

[52] Thevenieau F., Nicaud J. M. Microorganisms as sources of oils. Oilseeds Fats Crop Lipids 2013:20:D603. doi:10.1051/ocl/2013034Search in Google Scholar

[53] Christophe G., Kumar V., Nouaille R., Gaudet G., Fontanille P., Pandey A., Soccol C. R., Larroche C. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Brazil Arch Biol Technol. 2012:55:29-46. doi:10.1590/S1516-89132012000100004Search in Google Scholar

[54] Liu J., Sun Z., Chen F. Heterotrophic production of algal oils. Biofuels from algae. Amsterdam: Elsevier, 2014. doi:10.1016/B978-0-444-59558-4.00006-1Search in Google Scholar

[55] Barisa A., Dzene I., Rosa M., Dobraja K. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia. Environmental and Climate Technologies 2015:15:48-58. doi:10.1515/rtuect-2015-0005Search in Google Scholar

[56] Elegbede I., Guerrero C. Algae biofuel in the Nigerian energy context. Environmental and Climate Technologies 2016:17:44-60. doi:10.1515/rtuect-2016-0005Search in Google Scholar

[57] FAO. FAOSTAT Land Use module, 2016. Available from: http://www.fao.org/faostat/en/#data/RL/visualizeSearch in Google Scholar

[58] The Helgi Library. Arable Land Area, 2014. Available from: http://www.helgilibrary.com/indicators/arable-land-areaSearch in Google Scholar

[59] United Nations. Population Division. World Population Prospects, the 2015 Revision. Department of Economic and Social Affairs, 2015.Search in Google Scholar

[60] Liang M. H., Jiang J. G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013:52:395-408. doi:10.1016/j.plipres.2013.05.002Search in Google Scholar

[61] Tatsiopoulos I. P., Tolis A. J. Economic aspects of the cotton-stalk biomass logistics and comparison of supply chain methods. Biomass and Bioenergy 2003:24(3):199-214. doi:10.1016/S0961-9534(02)00115-0Search in Google Scholar

[62] Hansen A. C., Barnes A. J., Lyne P. W. L. Simulation modelling of sugarcane harvest-to-mill delivery systems. Transactions of the ASAE 2002:45(3):531-8. doi:10.13031/2013.8819Search in Google Scholar

[63] Nilsson D. Dynamic simulation of straw harvesting systems: influence of climatic, geographical factors on performance and costs. Journal of Agricultural Engineering Research 2000:76(1):27-36. doi:10.1006/jaer.1999.0456Search in Google Scholar

[64] Nilsson D., Hansson P. A. Influence of various machinery combinations, fuel proportions and storage capacities on costs for co handling of straw and reed canary grass to district heating plants. Biomass and Bioenergy 2001:20(4):247-60. doi:10.1016/S0961-9534(00)00077-5Search in Google Scholar

[65] Mantovani B., Gibson H. A. Simulation model for analysis of harvesting and transport costs for biomass based on geography, density and plant location. Energy in World Agriculture 1992:5:253-80.Search in Google Scholar

[66] Berruto R., Maier D. E. Analyzing the receiving operation of different grain types in a single-pit country elevator. Transactions of the ASAE 2001:44(3):631-8. doi:10.13031/2013.6090Search in Google Scholar

[67] Berruto R., Ess D., Maier D. E., Dooley F. Network simulation of crop harvesting and delivery from farm field to commercial elevator. Electronic proceedings of the international conference on crop harvesting and processing, 9-11 February 2003, Louisville, USA.Search in Google Scholar

[68] Humphrey D. G., Chu J. Optimization of a corn processing simulation model. Proceedings of the winter simulation conference, December 13-16, Arlington, USA. New York: ACM Press, 1992:1349-55. doi:10.1145/167293.167941Search in Google Scholar

[69] Benock G., Loewer O. J., Bridges Jr. T., Loewer D. H. Grain flow restrictions in harvesting-delivery drying systems. Transactions of the ASAE 1981:24(5):1151-61. doi:10.13031/2013.34412Search in Google Scholar

[70] Sokhansanj S., Kumar A., Turhollow A. F. Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass & Bioenergy 2006:30:838-847. doi:10.1016/j.biombioe.2006.04.004Search in Google Scholar

[71] Ebadian M., Sowlati T., Sokhansanj S., Townley-Smith L., Stumborg M. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production. Applied Energy 2013:102:840-849. doi:10.1016/j.apenergy.2012.08.049Search in Google Scholar

[72] Ebadian M., Sowlati T., Sokhansanj S., Stumborg M., Townley-Smith L. A new simulation model for multi-agricultural biomass logistics system in bioenergy production. Biosyst Eng 2011:110:280-90. doi:10.1016/j.biosystemseng.2011.08.008Search in Google Scholar

[73] Ravula P. P. Design, simulation, analysis and optimization of transportation system for a biomass to ethanol conversion plant. Doctoral thesis, Virginia Polytechnic Institute and State University, 2007.Search in Google Scholar

[74] Welfle A., Gilbert P., Thornley P. Increasing biomass resource availability through supply chain analysis. Biomass and Bioenergy 2014:70:249-266. doi:10.1016/j.biombioe.2014.08.001Search in Google Scholar

[75] Runge K., Blumberga A., Blumberga D. Bioeconomy growth in Latvia. System-dynamics model for high-value added products in fisheries. Energy Procedia 2017:113:339-345. doi:10.1016/j.egypro.2017.04.075Search in Google Scholar

[76] Blumberga A., Timma L., Blumberga D. System Dynamic Model for the Accumulation of Renewable Electricity using Power-to-Gas and Power-to-Liquid Concepts. Environmental and Climate Technologies 2015:16:54-69. doi:10.1515/rtuect-2015-0012.Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other