Cite

[1] Wichtmann W., Oehmke C., Barisch S., Deschan F., Malashevich U., Tanneberger F. Combustibility of biomass from wet fens in Belarus and its potential as a substitute for peat in fuel briquettes. Mires and Peat 2014:1-10.Search in Google Scholar

[2] Karki S., Elsgaard L., Lærke P. E. Effect of reed canary grass cultivation on greenhouse gas emission from peat soil at controlled rewetting. Biogeosciences 2015:12:595-606. doi:10.5194/bg-12-595-2015Search in Google Scholar

[3] Cooper D. J., MacDonald L. H. Restoring the vegetation of mined peatlands in the southern Rocky Mountains of Colorado. Restoration Ecology 2000:8(2):103-111.10.1046/j.1526-100x.2000.80016.xSearch in Google Scholar

[4] Harpenslager S. F., van den Elzen E., Kox M. A. R., Smolders A. J. P., Ettwig K. F., Lamers L. P. M. Rewetting former agricultural peatlands: Topsoil removal as aprerequisite to avoid strong nutrient and greenhouse gas emissions. Ecological Engineering 2015:84:159-168. doi:10.1016/j.ecoleng.2015.08.002Search in Google Scholar

[5] Paludiculture. Sustainable productive utilisation of rewetted peatlands. 2018. Available: http://www.succow-stiftung.de/tl_files/pdfs_downloads/Buecher%20und%20Broschueren/Bochure%20Paludiculture.pdf [Accessed: 30.10.2018].Search in Google Scholar

[6] Temmink R. J. M., Fritz C., van Dijk G., Hensgens G., Lamers L. P. M., Krebs M., Gaudig G., Joosten H. Sphagnum farming in a eutrophic world: The importance of optimal nutrient stoichiometry. Ecological Engineering 2017:98:196-205. doi:10.1016/j.ecoleng.2016.10.069Search in Google Scholar

[7] Kundas S., Wichtman W., Rodzkin A., Pashinsky V. Use of biomass from wet peatland for energy purpose. International and renewable energy sources as alternative primary energy sources in the region: 8 Int. Scientific Conference, 2-3 April 2015, Lviv.Search in Google Scholar

[8] Shurpali N. J., Strandman H., Kilpelainenw A., Huttunen J., Hyvonen N., Biasi C., Kellomakiw S., Martikainen P. Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil. GCB Bioenergy 2010:2:130-138. doi:10.1111/j.1757-1707.2010.01048.xSearch in Google Scholar

[9] Wichmann S., Kobbing J. F. Common reed for thatching - A first review of the European market. Industrial Crops and Products 2015:77:1063-1073. doi:10.1016/j.indcrop.2015.09.027Search in Google Scholar

[10] Kuzovkina J., Martin F. Willows beyond wetlands: uses of Salix l. species for environmental projects. Water, Air, and Soil Pollution 2005, 162. P.183-204. doi:10.1007/s11270-005-6272-5Search in Google Scholar

[11] Abrahamson L., Volk T., Smart L., Cameron K. Willow Biomass Producer’s Handbook. State University of New York, 2002.Search in Google Scholar

[12] Dimitriou J., Aronsson P. Willows for energy and phytoremediation in Sweden. Unasylva, 2005.Search in Google Scholar

[13] Mosiej J., Karczmarczyk A., Wyporska K., Rodzkin A. Biomass Production in Energy Forests. Ecosystem Health and Sustainable Agriculture 3. Uppsala University, 2012.Search in Google Scholar

[14] Schweier J., Becker G. Harvesting of short rotation coppice - harvesting trials with a cut and storage system in Germany. Silva Fennica 2012:46(2):287-299.10.14214/sf.61Search in Google Scholar

[15] Shuai W., Chen N., Li B., Zhou C., Gao J. Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass and Bioenergy 2016:92:40-47. doi:10.1016/j.biombioe.2016.06.002Search in Google Scholar

[16] Unpinit T., Poblarp T., Sailoon N., Wongwicha P., Thabuota M. Fuel Properties of Bio-Pellets Produced from Selected Materials under Various Compacting Pressure. Energy Procedia 2015:79:657-66.10.1016/j.egypro.2015.11.551Search in Google Scholar

[17] Thabuota M., Pagketanang T., Panyacharoen K., Mongkut P., Wongwicha P. Effect of Applied Pressure and Binder Proportion on the Fuel Properties of Holey Bio-Briquettes. Energy Procedia 2015:79:890-895.10.1016/j.egypro.2015.11.583Search in Google Scholar

[18] Lamidi R. O., Wanga Y., Patharea P. B., Roskilly A. P., Calispa Aguilar M. Biogas Tri-generation for Postharvest Processing of Agricultural Products in a Rural Community: Techno-economic Perspectives. Energy Procedia 2017:142:63-69. doi:10.1016/j.egypro.2017.12.011Search in Google Scholar

[19] Rodzkin A., Shkutnik O., Krstich B., Borisev M. Environmental background of fast-growing willow production on different type of soil. Safe food. XVI International Eco-conference, 26-29 September 2012, Novi Sad.Search in Google Scholar

[20] Kundas S., Wichtman W., Rodzkin A., Pashinsky V. Use of biomass from wet peatland for energy purpose. International and renewable energy sources as alternative primary energy sources in the region: 8 International Scientific Conference, 2-3 April 2015, Lviv.Search in Google Scholar

[21] International Organization for Standardization (IOS). Environmental management - Life Cycle Assessment - Principles and Framework. ISO 14040. Geneva, 1997.Search in Google Scholar

[22] Rodzkin A., Kundas S., Wichtmann W. Life cycle assessment of biomass production from drained wetlands areas for composite briquettes fabrication. Energy Procedia 2017:128:261-267. doi:10.1016/j.egypro.2017.09.069Search in Google Scholar

[23] Rodzkin A., Orlovich S., Pilipovich A., Krstich B. Ecological and economic importance of energy crops. Environmental protection of urban and suburban settlements: International eco-conference, Serbia, 25-28 September 2013, Novi Sad.Search in Google Scholar

[24] Eisenbies M. H., Volk T. A., Posselius J., Foster C., Shi S., Karapetyan S. Evaluation of a Single-Pass, Cut and Chip Harvest System on Commercial-Scale, Short-Rotation Shrub Willow Biomass Crops. BioEnergy Research 2014:7(4):1506-1518. doi:10.1007/s12155-014-9482-0Search in Google Scholar

[25] Lord R. A. Reed canary grass (Phalaris arundinacea) outperforms Miscanthus or willow on marginal soils, brownfield and non-agricultural sites for local, sustainable energy crop production. Biomass and Bioenergy 2015:78:110-125. doi:10.1016/j.biombioe.2015.04.015Search in Google Scholar

[26] Bosco S., Nassi N., Nasso D., Roncucci N., Mazzoncini M., Bonari E. Environmental performances of giant reed (Arundo donax L.) cultivated in fertile and marginal lands: A case study in the Mediterranean. Europ. J. Agronomy 2016:78:20-31. doi:10.1016/j.eja.2016.04.006Search in Google Scholar

[27] Rosenqvist H., Roos A., Ling E., Hektor B. Willow growers in Sweden. Biomass and Bioenergy 2000:18:137-145. doi:10.1016/S0961-9534(99)00081-1Search in Google Scholar

[28] Platace R., Adamovics A. Indicators characterizing calorific value of reed canary grass and last year’s grass. Engineering for rural development, Proceedings of 13th International Scientific Conference, 29-30 May 2014, Jelgava.Search in Google Scholar

[29] Willows for Biomass Heating. Available: http://www.sodui.lt/Willows-for-Biomass-Heating-707.html [Accessed: 01.02.18].Search in Google Scholar

[30] Rosenqvist H., Nilsson L. J. Energy Crop Production Costs in the EU. RENEW Renewable fuels for advanced powertrains. Lund University, 2006.Search in Google Scholar

[31] Rosenqvist H., Barry N. An economic analysis of leachate purification through willow-coppice vegetation filters. Bioresource Technology 2004:94:321-329. doi:10.1016/j.biortech.2003.12.017Search in Google Scholar

[32] Krasuska E., Rosenqvist H. Economics of energy crops in Poland today and in the future. Biomass and Bioenergy 2012:38:23-33. doi:10.1016/j.biombioe.2011.09.011Search in Google Scholar

[33] Rosenqvist H., Dawson M. Economics of using wastewater irrigation of willow in Northern Ireland. Biomass and Bioenergy 2005:29:83-92. doi:10.1016/j.biombioe.2005.04.001Search in Google Scholar

[34] Fuel granules. Available: http://www.wood-pellets.com/cgi-bin/cms/index.cgi?lang=2 [Accessed: 01.02.18].Search in Google Scholar

[35] C. Wrobel, B. E. Coulman & D. L. Smith. The potential use of reed canary grass (Phalaris arundinacea L.) as a biofuel crop. Acta Agriculturae Scandinavica Section B - Soil and Plant Science 2009:59:1-18. doi:10.1080/09064710801920230Search in Google Scholar

[36] Porso C. The effect of new raw materials on pellet prices. SLU Uppsala, 2010.Search in Google Scholar

[37] European Pellet Report. PellCert project, 2012.Search in Google Scholar

[38] Proskurina S., Alakangas E., Heinimo J., Mikkilaa M., Vakkilainena E. A survey analysis of the wood pellet industry in Finland: Future perspectives. Energy 2017:118:692-704. doi:10.1016/j.energy.2016.10.102Search in Google Scholar

[39] Massachusetts Department of Energy Resources. Massachusetts SHOPP & Wood Pellet Survey. U.S. EIA SHOPP Conference July 13, 2016.Search in Google Scholar

[40] CO2 European emission allowances. Price commodity. Available: https://markets.businessinsider.com/commodities/co2-emissionsrechte [Accessed: 01.02.18].Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other