Open Access

Sustainable Use Of Macro-Algae For Biogas Production In Latvian Conditions: A Preliminary Study Through An Integrated Mca And Lca Approach


Cite

1. Nehrin, R. Traversing the mountaintop: world fossil fuel production to 2050. Philosophical transactions of the Royal Society. Biological sciences, 2009, No. 364 (1532), pp. 3067-3079.Search in Google Scholar

2. McKendry, P. Energy production from biomass: overview of biomass. Review paper. Bioresource Technology, 2002, No. 83, pp. 37-46. http://dx.doi.org/10.1016/S0960-8524(01)00118-310.1016/S0960-8524(01)00118-3Search in Google Scholar

3. Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, No. 24, pp. 1357-1378. http://dx.doi.org/10.1016/S0196-8904(00)00137-010.1016/S0196-8904(00)00137-0Search in Google Scholar

4. Alam, F., Date, A., Rasjidin, R., Mobin, S., Moria, D., Baqui, A. Biofuel from algae - Is it a viable option? Procedia Engineering, 2012, No. 49, pp. 221-227.10.1016/j.proeng.2012.10.131Search in Google Scholar

5. Alvadar-Morales, M., Boldrin, A., Karakashev, B., Holdt, S. L., Angelidaki, I., Astrup, T. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresource Technology, 2013, No. 129, pp. 92-99. http://dx.doi.org/10.1016/j.biortech.2012.11.02910.1016/j.biortech.2012.11.02923238340Search in Google Scholar

6. Debowski, M., Zielinski, M., Grala, A., Dudek, M. Algae biomass as an alternative substrate in biogas production technologies - Review. Renewable and Sustainable Energy Reviews, 2013, No. 27, pp. 596-604. http://dx.doi.org/10.1016/j.rser.2013.07.02910.1016/j.rser.2013.07.029Search in Google Scholar

7. Singh, A., Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 2011, No. 88, pp. 3548-3555. http://dx.doi.org/10.1016/j.apenergy.2010.12.01210.1016/j.apenergy.2010.12.012Search in Google Scholar

8. Bruton, T., Lyons, H., Lerat, Y., Stanley, M., Rasmussen, M. B. A review of the potential of marine algae as a source of biofuel in Ireland. Dublin. Ireland: Sustainable Energy Ireland, 2009.Search in Google Scholar

9. Wellinger, A. Algal Biomass - Does it save the world? Short reflections. IEA Bioenergy Task 37 report. 2009, p. 13.Search in Google Scholar

10. Kim, S. K. Handbook of Marine Macroalgae: Biotechnology and Applied Physology. USA: Wiley, 2011.http://dx.doi.org/10.1002/978111997708710.1002/9781119977087Search in Google Scholar

11. Archer, D., Barber, J. Molecular to global photosynthesis. UK:Imperial College Press, 2004. http://dx.doi.org/10.1142/p21810.1142/p218Search in Google Scholar

12. Zamalloa, C., Vulsteke, E., Albrecht, J., Verstraete, W. The technoeconomic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technology, 2011, No. 102, pp. 1149-1158. http://dx.doi.org/10.1016/j.biortech.2010.09.01710.1016/j.biortech.2010.09.01720933389Search in Google Scholar

13. Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., Benemann, J. R. A realistic Technology and Engineering assessment of algae biofuel production. USA: Energy Biosciences Institute, 2010.Search in Google Scholar

14. Resurreccion, E., Colosi, L., White, M., Clarens, A. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresource Technology, 2012.No. 126, pp. 298-306. http://dx.doi.org/10.1016/j.biortech.2012.09.03810.1016/j.biortech.2012.09.03823117186Search in Google Scholar

15. Richardson, J. W., Johnson, M. D., Outlaw, J. L. Economical comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Research, 2012, No. 1, pp. 93-100.10.1016/j.algal.2012.04.001Search in Google Scholar

16. Slade, R., Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 2013, No. 53, pp. 29-38. http://dx.doi.org/10.1016/j.biombioe.2012.12.01910.1016/j.biombioe.2012.12.019Search in Google Scholar

17. Demirbas, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management, 2000, No. 41 (6), pp. 633-646.10.1016/S0196-8904(99)00130-2Search in Google Scholar

18. Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, No. 24, pp. 1357-1378. http://dx.doi.org/10.1016/S0196-8904(00)00137-010.1016/S0196-8904(00)00137-0Search in Google Scholar

19. Dragone, G., Fernandes, B., Vicente, A. A., Teixeira, J. A. Third generation biofuels from microalgae. Communicating Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2010, No. 2, pp. 1355-1366.Search in Google Scholar

20. Bahadar, A., Khan, M. B. Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 2013, No. 27, pp. 128-148. http://dx.doi.org/10.1016/j.rser.2013.06.02910.1016/j.rser.2013.06.029Search in Google Scholar

21. Eroglu, E., Melis, A. Photobiological hydrogen production: Recent advances and state of art. Bioresource Technology, 2011, No. 102, pp. 8403-8413. http://dx.doi.org/10.1016/j.biortech.2011.03.02610.1016/j.biortech.2011.03.02621463932Search in Google Scholar

22. Environmental policy strategy 2009-2015. Cabinet order 517. Latvijas Vēstnesis 2009, No. 122 (4108), p. 53.Search in Google Scholar

23. Europe 2020. A strategy for smart, sustainable and inclusive growth. EU: European Commission. 2010.Search in Google Scholar

24. Kalns, J. [Online] Biogas in Latvia. 2012. [Accessed: 23 January 2014]. Available: http://www.lvportals.lv/likumi-prakse.php?id=251397Search in Google Scholar

25. Astill, H., Walker, D., Kiliminster, K., et. al. Macrophytes and macroalgae in the Swan-Canning estuary. River Science, 2010, No. 20, pp. 2-12.Search in Google Scholar

26. Freshwater Ecology: Concepts and Environmental Applications. Dodds W.K. USA: Academy Press, 2002.Search in Google Scholar

27. Gül, T. Integrated Analysis of Hybrid Systems for Rural Electrification in Developing Countries. M.Sc. Thesis. RIT Division of Land and Water and Water Resources Engineering, Stockholm, Sweden. 2004, p. 117.Search in Google Scholar

28. Hwang, C. L., Yoon, K. Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, Heidelbeg, 1981.10.1007/978-3-642-48318-9Search in Google Scholar

29. Tzeng, G. H., Huang, J. J. Multiple Attribute Decision Making: Methods and Applications. United States of America: Taylor & Francis, Boca Raton, 2011.10.1201/b11032Search in Google Scholar

30. Körth, H. Zur Berücksichtigung mehrere Zielfunktionen bei der Optimierung von Produktions planen. Mathematik und Wirtschaft, 1969, No. 6, pp. 184-201.Search in Google Scholar

31. Pubule, J., Blumberga, A., Romagnoli, F., Blumberga, D. Finding an optimal solution for biowaste management in the Baltic States. In press, Journal of Cleaner Production, 2014. Available online on May 2014.10.1016/j.jclepro.2014.04.053Search in Google Scholar

32. Dong, J., Chi, Y., Zou, D., Fu, C., Huang, Q., Ni, M. Energy environment economy assessment of waste management systems from a life cycle perspective: model development and case study. Applied Energy, 2014, No. 114, pp. 400-408. http://dx.doi.org/10.1016/j.apenergy.2013.09.03710.1016/j.apenergy.2013.09.037Search in Google Scholar

33. Saaty, T. The analytic hierarchy process. New York: McGraw Hill, 1980.10.21236/ADA214804Search in Google Scholar

34. ISO. ISO 14040: Environmental management-Life cycle assessment- Principles and Framework. Geneva: ISP copyright office; 1997Search in Google Scholar

35. ISO 14044: Environmental management. Life cycle assessment- requirement and guidelines. International Organization for Standardization, 2006.Search in Google Scholar

36. Rodríguez R., Ruyck J. D., Díaz P. R., Verma V. K., Bram S. An LCA based indicator for evaluation of alternative energy routes. Applied Energy, 2011, No. 88(3), pp. 630-635.10.1016/j.apenergy.2010.08.013Search in Google Scholar

37. Frischknecht, R., Jungbluth, N., Althaus, H.J., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., Margni, M., Nemecek, T., Spielmann, M. Implementation of Life Cycle Impact Assessment Methods: Data v2.0. ecoinvent report No. 3. Switzerland: Swiss center for Life Cycle Inventories, 2007.Search in Google Scholar

38. Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., Meijer, E. Introduction to LCA with SimaPro. The Netherlands: PRe consultants, 2013.Search in Google Scholar

39. Goedkoop, M., Oel, M., Schryver, A., Vieira, M. SimaPro Database Manual: Methods Library. The Netherlands: Pre Consultants, 2008.Search in Google Scholar

40. Humbert, S., Schryver, A., Bengoa, X., Margni, M., Jolliet, O. IMPACT 2002+: User Guide. Draft for version Q2.21. 2012. USA: Quantis press, 2012.Search in Google Scholar

41. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. USA: Ecomed publishers, 2003.Search in Google Scholar

42. Bruhn, A., Dahl, J., Nielsen, H.B., et. al. Bioenergy potential of Ulva lactuca: Biomass yield methane production and combustion. Bioresource Technology, 2011, No.102, pp. 2595-2604. http://dx.doi.org/10.1016/j.biortech.2010.10.01010.1016/j.biortech.2010.10.01021044839Search in Google Scholar

43. Van Iersel, S., Gamba, L., Rossi, A., Alberci, S., Dehue, B., Van de Staaij, J., Flammini, A. Algae-based biofuels: A review of challenges and opportunities for developing countries. Italy: Food and agriculture Organization of the Unites Nations, 2009.Search in Google Scholar

44. Kumar, P. Analysis of CO2 capture using algae. USA: Oilgae, 2010. 24 p.Search in Google Scholar

45. Bruhn, A., Dahl, J., Nielsen, H. B., et. al. Bioenergy potential of Ulva lactuca: Biomass yield methane production and combustion. Bioresource Technology, 2011, No. 102, pp. 2595-2604. http://dx.doi.org/10.1016/j.biortech.2010.10.01010.1016/j.biortech.2010.10.010Search in Google Scholar

46. Surendra, K. C., Takara, D., Hashimote, A. G., et. al. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 2012, No. 31, pp. 846-859.10.1016/j.rser.2013.12.015Search in Google Scholar

47. Collet, P., Helias, A., Lardon, L., et. al. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 2011, No. 102, pp. 207-214. http://dx.doi.org/10.1016/j.biortech.2010.06.15410.1016/j.biortech.2010.06.15420674343Search in Google Scholar

48. Frost, P., Gilkinson, S. 27 months performance summary for anaerobic digestion of dairy cow slurry at AFBI Hillsborough. Interim Technical report. USA: Agri-Food and Biosciences Institue, 2011. p. 13.Search in Google Scholar

49. Aresta, M., Dibendetto, A., Barberio, G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study. Fuel Processing Technology, 2005, No. 86, pp. 1679-1693. http://dx.doi.org/10.1016/j.fuproc.2005.01.01610.1016/j.fuproc.2005.01.016Search in Google Scholar

50. Tredici, M. R. Energy balance of microalgae cultures in photobioreactors and ponds. The energy balance and the NER, calculated on real number as at the base of a sound LCA of algal biofules. Italy: EU workshop, Life Cycle Analysis of Algal Based Biofuels, 2012. p. 38.Search in Google Scholar

51. Biogas composition from different sources [Online] [Accessed: 13 March 2014]. Available: http://www.biogas-renewable-energy.info/ biogas_ composition.htmlSearch in Google Scholar

52. Selehion, A. R., Minael, S., Razavi, S. J. Design and performance evaluation of screw press separator for separating dairy cattle manure. International Journal of Agronomy and Plant Production, 2013, No. 4, pp. 3849-3858.Search in Google Scholar

53. Cuellar, A. D., Webber, M. E. Cow power: the energy and emissions benefits of converting manure to biogas. Environmnetal Research Letters, 2008, No. 3(3), p. 8.10.1088/1748-9326/3/3/034002Search in Google Scholar

54. Koenig, R. T., Hammac, W. A., Pan, W. L. Canola growth, development and fertility. Fact sheet. USA: Washington state university, 2011, p. 6.Search in Google Scholar

55. Balodis, I., Balodis, O. Winter Oilseed Rape Growing - Experience in Farm „Azaidi. Lauksaimniecības zinātne veiksmīgai saimniekošanai, 2013, No. 21, p. 4.Search in Google Scholar

56. Biogāzes izmantošanas alternatīvu sistēmu efektivitātes un izmaksu salīdzināšanas sociāli-ekonomisko ieguvmu novērtējums. Izpildes tehniskais ziņojums (Biogas use alternative system efficiency and cost comparison for socio-economic gain evaluation. Technical implementation report). Latvia: Enerģija un vide, 2012, p. 20.Search in Google Scholar

57. Dubrovskis, V., Niklass, M., Emsis, I., Kārkliņš, A. Biogāzes ražošana un efektīva izmantošana (Biogas production and efficienct use). Latvia: Latvijas Biogāzes Asociācija, 2013. p. 88.Search in Google Scholar

58. Frank, E. D., Han, J., Palau-Rivera, I., et. al. Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels. Environmental Research letters, 2012, No. 7, p. 10.10.1088/1748-9326/7/1/014030Search in Google Scholar

59. Auziņš, J., Januševskis, A. Eksperimentu plānošana un analīze (Experimental planning and analysis). Latvia: Riga Technical University press, 2007. p. 256.Search in Google Scholar

60. Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., et. al. Heavy metal adsorbtion properties of a submerged aquatic plant (Ceratophyllumdemersum). Bioresource Technology, 2004, No. 92 (2), pp. 197-200.10.1016/j.biortech.2003.07.01114693453Search in Google Scholar

61. Aravind, P., Prasad, M. N. V. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Cerathophyllumdemersum L., a freshwater macrophyte. Plant Science, 2004, No. 166 (5), pp. 1321-1327.10.1016/j.plantsci.2004.01.011Search in Google Scholar

62. Rajiv, K. S. Air, water and soil pollution science and technology: green plants and pollution. USA: Nova science publisher, 2010. Search in Google Scholar

63. Block, T. A. Rhoads, A. F., Anisko, A. Aquatic Plants of Pennsylvania: A Complete Reference Guide Book. USA: University of Pennsylvania Press, 2011. http://dx.doi.org/10.9783/978081220504610.9783/9780812205046Search in Google Scholar

64. Ha, M. H., Pflugmacher, S. Time-dependentalterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratphyllumdemersum during exposure to the cyanobacterial neurotoxin anatoxin-a. Aquatic toxicology, 2013, No.138, p. 26-34. http://dx.doi.org/10.1016/j.aquatox.2013.04.00710.1016/j.aquatox.2013.04.00723685387Search in Google Scholar

65. METHOD 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids. Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division. USA: US EPA.2001. Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other