Open Access

Techno-Environmental Assessment Of Co-Gasification Of Low-Grade Turkish Lignite With Biomass In A Trigeneration Power Plant


Cite

1. McIlveen-Wright, D. R., Huang, Y., Rezvani, S., Mondol, J. D., Redpath, D., Anderson, M., Hewitt, N. J., Williams, B. C. A technoeconomic assessment of the reduction of carbon dioxide emissions through the use of biomass co-combustion, Fuel, 2011, No. 90, pp. 24-32.10.1016/j.fuel.2010.08.022Search in Google Scholar

2. Baxter, L., Koppejan, J. Co-combustion of biomass and coal, Euroheat and Power (English Edition), 2004, No. 1, pp. 34-39.Search in Google Scholar

3. Haykırı-Acma, H. Combustion characteristics of different biomass materials, Energy Conversion and Management, 2003, No. 44, pp. 155-162. http://dx.doi.org/10.1016/S0196-8904(01)00200-X10.1016/S0196-8904(01)00200-XSearch in Google Scholar

4. Yamamoto, K. Biomass power generation by CFB boiler, NKK Technical Review, 2001, No. 85.Search in Google Scholar

5. Lin, L., Wang, Y., Al-Shemmeri, T., Zeng, S., Huang, J., He, Y., Huang, X., Li, S., Yang, J. Characteristics of a diffusion absorption refrigerator driven by the waste heat from engine exhaust”, Proceedings of the Institution of Mechanical Engineers, Part E, Journal of Process Mechanical Engineering, 2006, No. 220, pp. 139-149.10.1243/09544089JPME102Search in Google Scholar

6. Wang, Y. D., et. al. An experimental investigation of a household size trigeneration, Journal of Applied Thermal Engineering, (2007). 27, pp. 576-585. http://dx.doi.org/10.1016/j.applthermaleng.2006.05.03110.1016/j.applthermaleng.2006.05.031Search in Google Scholar

7. Lin, L., Wang, Y., Al-Shemmeri, T., Ruxton, T., Turner, S., Zeng, S., Huang, J., He, Y., Huang, X. Energy efficiency and economic feasibility of CCHP driven by sterling engine, Energy Conversion and Management, 2004, No. 45, pp. 1433-1442.10.1016/j.enconman.2003.09.009Search in Google Scholar

8. Temir, G., Bilge, D. Thermoeconomic analysis of a trigeneration system, Applied Thermal Engineering, 2004, No. 24, pp. 2689-2699. http://dx.doi.org/10.1016/j.applthermaleng.2004.03.01410.1016/j.applthermaleng.2004.03.014Search in Google Scholar

9. Calva, E. T., Núñez, M. P., Toral, M. A. R. Thermal integration of trigeneration systems, Applied Thermal Engineering, 2005, No. 25, pp. 973-984. http://dx.doi.org/10.1016/j.applthermaleng.2004.06.02210.1016/j.applthermaleng.2004.06.022Search in Google Scholar

10. Rong, A., Lahdelma, R. An efficient linear programming model and optimization algorithm for trigeneration, Applied Energy, 2005, No. 82, pp. 40-63. http://dx.doi.org/10.1016/j.apenergy.2004.07.01310.1016/j.apenergy.2004.07.013Search in Google Scholar

11. Ziher, D., Poredos, A. Economics of a trigeneration system in a hospital, Applied Thermal Engineering, 2006, No. 26, pp. 680-687. http://dx.doi.org/10.1016/j.applthermaleng.2005.09.00710.1016/j.applthermaleng.2005.09.007Search in Google Scholar

12. Temir, G., Bilge, D., Emanet, G. An application of trigeneration and its economic analysis, Energy Sources, 2004, No. 26, pp. 857-867. http://dx.doi.org/10.1080/0090831049046589410.1080/00908310490465894Search in Google Scholar

13. Yaodong, W., Ye, H., Anthony, P., Yulong, D., Neil, H. Trigeneration running with raw jatropha oil, Fuel Processing Technology, 2010, No. 91, pp. 348-353.10.1016/j.fuproc.2009.11.006Search in Google Scholar

14. Suamir, I., Tassou, S. A. Performance evaluation of integrated trigeneration and CO2 refrigeration systems, Applied Thermal Engineering, 2012, No. 11, pp. 1-9.Search in Google Scholar

15. Eicker, U. Biomass trigeneration with decentral cooling by distric heating networks, Proceedings of 2nd Polygeneration conference, Tarragona, 2011.Search in Google Scholar

16. Bruno, J. C., Ortega-López, V., Coronas, A. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant, Applied Energy, 2009 No. 86, pp. 837-847. http://dx.doi.org/10.1016/j.apenergy.2008.08.00710.1016/j.apenergy.2008.08.007Search in Google Scholar

17. Huang, Y., Wang, Y. D., Rezvani, S., McIlveen-Wright, D. R., Anderson, M., Hewitt, N. J. Biomass fuelled trigeneration system in selected buildings, Energy Conversion and Management, 2011, No. 52, pp. 2448-2454. http://dx.doi.org/10.1016/j.enconman.2010.12.05310.1016/j.enconman.2010.12.053Search in Google Scholar

18. Lai, S. M., Hui, C. W. Feasibility and flexibility for a trigeneration system, Energy 2009, No. 34, pp. 1693-1704. http://dx.doi.org/10.1016/j.energy.2009.04.02410.1016/j.energy.2009.04.024Search in Google Scholar

19. Thermoflow (2008) Thermoflex, “Version 18, Thermoflow Inc., 29 Hudson Road Sudbury. MA 01776, USA.Search in Google Scholar

20. Kaygusuz, K., Turker, M. F. Biomass energy potential in Turkey, Renewable Energy, 2002, No. 26, pp. 661-678. http://dx.doi.org/10.1016/S0960-1481(01)00154-910.1016/S0960-1481(01)00154-9Search in Google Scholar

21. Balat, M. Use of biomass sources for energy in Turkey and a view to biomass potential, Biomass and Bioenergy, 2005, No. 29, pp. 32-41. http://dx.doi.org/10.1016/j.biombioe.2005.02.00410.1016/j.biombioe.2005.02.004Search in Google Scholar

22. Demirbas, A. Importance of biomass energy sources for Turkey, Energy Policy, 2008, No. 36, pp. 834-842. http://dx.doi.org/10.1016/j.enpol.2007.11.00510.1016/j.enpol.2007.11.005Search in Google Scholar

23. Munasinghe, P. C., Khanal, S. K. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges, Bioresource Technology, 2010, No. 101, pp. 5013-5022. http://dx.doi.org/10.1016/j.biortech.2009.12.098 10.1016/j.biortech.2009.12.09820096574Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other