Cite

1. Wolkanin-Bartnik J, Pogorzelska H, Szperl M, Bartnik A, Koziarek J, Bilinska ZT. Impact of genetic and clinical factors on dose requirements and quality of anticoagulation therapy in Polish patients receiving acenocoumarol: dosing calculation algorithm. Pharmacogenet Genomics. 2013;23(11):611-8. DOI: 10.1097/ FPC.000000000000000410.1097/FPC.000000000000000424108193Search in Google Scholar

2. Daly AK. Pharmacogenomics of anticoagulants: steps toward personal dosage. Genome Med. 2009;1(1):10. DOI: 10.1186/gm1010.1186/gm10265158419348697Search in Google Scholar

3. Buzoianu AD, Trifa AP, Mureşanu DF, Crişan S. Analysis of CYP2C9*2, CYP2C9*3 and VKORC1 -1639 G>A polymorphisms in a population from South-Eastern Europe. J Cell Mol Med. 2012;16(12):2919-24. DOI: 10.1111/j.1582-4934.2012.01606.x10.1111/j.1582-4934.2012.01606.x439372022863573Search in Google Scholar

4. Thijssen HH, Flinois JP, Beaune PH. Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos. 2000;28(11):1284-90.Search in Google Scholar

5. Bodin L, Verstuyft C, Tregouet DA, Robert A, Dubert L, Funck-Brentano C, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood. 2005;106(1):135-40. DOI: 10.1182/blood-2005-01-034110.1182/blood-2005-01-034115790782Search in Google Scholar

6. Pop TR, Vesa Ş, Trifa AP, Crişan S, Buzoianu AD. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur J Clin Pharmacol. 2013;69(11):1901-7. DOI: 10.1007/s00228-013-1551-310.1007/s00228-013-1551-323774941Search in Google Scholar

7. Anton AI, Cerezo-Manchado JJ, Padilla J, Perez-Andreu V, Corral J, Vicente V, et al. Novel associations of VKORC1 variants with higher acenocoumarol requirements. PLoS One. 2013;8(5):e64469. DOI: 10.1371/ journal.pone.006446910.1371/journal.pone.0064469365688323691226Search in Google Scholar

8. Verhoef TI, Redekop WK, Buikema MM, Schalekamp T, Van Der Meer FJ, Le Cessie S, et al; EU-PACT Group. Long-term anticoagulant effects of the CYP2C9 and VKORC1 genotypes in acenocoumarol users. J Thromb Haemost. 2012;10(4):606-14. DOI: 10.1111/j.1538-7836.2012.04633.x10.1111/j.1538-7836.2012.04633.x22252093Search in Google Scholar

9. Kirchheiner J, Brockmöller J. Clinical consequences of cytochrome P4502C9 polymorphisms. Clin Pharmacol Ther. 2005;77(1):1-16. DOI: 10.1016/j. clpt.2004.08.009Search in Google Scholar

10. Geisen C, Watzka M, Sittinger K, Steffens M, Daugela L, Seifried E, et al. VKORC1 haplotypes and their impact on the inter individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost. 2005;94(4):773-9.Search in Google Scholar

11. Montes R, de Gaona RE, Martinez-Gonzalez MA, Alberca I, Hermida J. The c._1639G4A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol. 2006;133(2):183-187. DOI: 10.1111/j.1365-2141.2006.06007.x10.1111/j.1365-2141.2006.06007.x16611310Search in Google Scholar

12. Wen MS, Lee M, Chen JJ, Chuang HP, Lu LS, Chen CH, et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther. 2008;84(1):83-9. DOI: 10.1038/ sj.clpt.610045310.1038/sj.clpt.610045318183038Search in Google Scholar

13. van Walraven C, Jennings A, Oake N, Fergusson D, Forster AJ. Effect of study setting on anticoagulation control: a systematic review and metaregression. Chest. 2006;129(5):1155-66. DOI: 10.1378/chest.129.5.115510.1378/chest.129.5.115516685005Search in Google Scholar

14. Spreafico M, Lodigiani C, van Leeuwen Y, Pizzotti D, Rota LL, Rosendaal F, et al. Effects of CYP2C9 and VKORC1 on INR variations and dose requirements during initial phase of anticoagulant therapy. Pharmacogenomics. 2008;9(9):1237-50. DOI: 10.2217/14622416.9.9.123710.2217/14622416.9.9.123718781852Search in Google Scholar

15. Teichert M, van Schaik RH, Hofman A, Uitterlinden AG, de Smet PA, Stricker BH, et al. Genotypes associated with reduced activity of VKORC1 and CYP2C9 and their modification of acenocoumarol anticoagulation during the initial treatment period. Clin Pharmacol Ther. 2009;85(4):379-86. DOI: 10.1038/clpt.2008.29410.1038/clpt.2008.29419225451Search in Google Scholar

16. Schalekamp T, Brassé BP, Roijers JFM, Chahid Y, van Geest-Daalderop JH, de Vries-Goldschmeding H, et al. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: Interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther. 2006;80(1):13-22. DOI: 10.1016/j.clpt.2006.04.00610.1016/j.clpt.2006.04.00616815313Search in Google Scholar

17. Limdi NA, Wiener H, Goldstein JA, Acton RT, Beasley TM. Influence of CYP2C9 and VKORC1 on Warfarin Response during Initiation of Therapy. Blood Cells Mol Dis. 2009;43(1):119-128. DOI: 10.1016/j. bcmd.2009.01.019Search in Google Scholar

18. Pérez-Andreu V1, Roldán V, Antón AI, García-Barberá N, Corral J, Vicente V, et al. Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood. 2009;113(20):4977-9. DOI: 10.1182/ blood-2008-09-176222 10.1182/blood-2008-09-17622219270263Search in Google Scholar

eISSN:
2284-5623
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology