Cite

[1] BANERJEE, S., CHATTOPADHYAYA, M.C. 2017. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry [online]. 10, S1629–S1638 [vid. 2019-04-30]. ISSN 1878-5352. Available at: doi:10.1016/J.ARABJC.2013.06.00510.1016/j.arabjc.2013.06.005Search in Google Scholar

[2] PATHANIA, D., SHARMA, S., SINGH, P. 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry [online]. 10, S1445–S1451 [vid. 2019-04-30]. ISSN 1878-5352. Available at: doi:10.1016/J.ARABJC.2013.04.02110.1016/j.arabjc.2013.04.021Search in Google Scholar

[3] RAFATULLAH, M., SULAIMAN, O., HASHIM, R., AHMAD, A. 2010. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials [online]. 177(1–3), 70–80 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2009.12.04710.1016/j.jhazmat.2009.12.04720044207Search in Google Scholar

[4] SLEIMAN, M., VILDOZO, D., FERRONATO, C., CHOVELON, J. M. 2007. Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental [online]. 77(1–2), 1–11 [vid. 2019-04-30]. ISSN 0926-3373. Available at: doi:10.1016/J.APCATB.2007.06.01510.1016/J.APCATB.2007.06.015Open DOISearch in Google Scholar

[5] SOHRABI, M.R., GHAVAMI, M. 2008. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. Journal of Hazardous Materials [online]. 153(3), 1235–1239 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.09.11410.1016/j.jhazmat.2007.09.11418006230Search in Google Scholar

[6] ABBASI, M., RAZZAGHI, N. 2008. ASL. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. Journal of Hazardous Materials [online]. 153(3), 942–947 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.09.04510.1016/j.jhazmat.2007.09.04517950996Search in Google Scholar

[7] ZAGHBANI, N., HAFIANE, A., DHAHBI, M. 2008. Removal of Safranin T from wastewater using micellar enhanced ultrafiltration. Desalination [online]. 222(1–3), 348–356 [vid. 2019-04-30]. ISSN 0011-9164. Available at: doi:10.1016/J.DESAL.2007.01.14810.1016/j.desal.2007.01.148Search in Google Scholar

[8] WU, J. S., LIU, Ch. H., CHU, K. H., SUEN, S. Y. 2008. Removal of cationic dye methyl violet 2B from water by cation exchange membranes. Journal of Membrane Science [online]. 309(1–2), 239–245 [vid. 2019-04-30]. ISSN 0376-7388. Available at: doi:10.1016/J.MEMSCI.2007.10.03510.1016/j.memsci.2007.10.035Search in Google Scholar

[9] FAN, L., ZHOU, Y., YANG, W., CHEN, G., YANG, F. 2008. Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments [online]. 76(2), 440–446 [vid. 2019-04-30]. ISSN 0143-7208. Available at: doi:10.1016/J.DYEPIG.2006.09.01310.1016/J.DYEPIG.2006.09.013Open DOISearch in Google Scholar

[10] ZHU, M. X, LEE, L., WANG, H. H., WANG, Z. 2007. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. Journal of Hazardous Materials [online]. 149(3), 735–741 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.04.03710.1016/j.jhazmat.2007.04.03717532132Search in Google Scholar

[11] SUDARJANTO, G., KELLER-LEHMANN, B., KELLER, J. 2006. Optimization of integrated chemical–biological degradation of a reactive azo dye using response surface methodology. Journal of Hazardous Materials [online]. 138(1), 160–168 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2006.05.05410.1016/J.JHAZMAT.2006.05.054Open DOISearch in Google Scholar

[12] SARRIA, V., DERONT, M., PÉRINGER, P., PULGARIN, C. 2003. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron(III) photoassisted–biological treatment. Applied Catalysis B: Environmental [online]. 40(3), 231–246 [vid. 2019-04-30]. ISSN 0926-3373. Available at: doi:10.1016/S0926-3373(02)00162-510.1016/S0926-3373(02)00162-5Search in Google Scholar

[13] GARCÍA-MONTAÑO, J., PÉREZ-ESTRADA, L., OLLER, I., MALDONADO, M. I. 2008. Francesc TORRADES a José PERAL. Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. Journal of Photochemistry and Photobiology A: Chemistry [online]. 195(2–3), 205–214 [vid. 2019-04-30]. ISSN 1010-6030. Available at: doi:10.1016/J.JPHOTOCHEM.2007.10.00410.1016/j.jphotochem.2007.10.004Search in Google Scholar

[14] LODHA, B., CHAUDHARI, S. 2007. Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. Journal of Hazardous Materials [online]. 148(1–2), 459–466 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.02.06110.1016/J.JHAZMAT.2007.02.061Open DOISearch in Google Scholar

[15] HAMEED, B.H., DAUD, F.B.M. 2008. Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chemical Engineering Journal [online]. 139(1), 48–55 [vid. 2019-04-30]. ISSN 1385-8947. Available at: doi:10.1016/J.CEJ.2007.07.08910.1016/J.CEJ.2007.07.089Open DOISearch in Google Scholar

[16] WU, F. Ch., TSENG, R. L. 2008. High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution. Journal of Hazardous Materials [online]. 152(3), 1256–1267 [vid. 2019-04-30]. ISSN 0304-3894. Available at: doi:10.1016/J.JHAZMAT.2007.07.10910.1016/j.jhazmat.2007.07.109Search in Google Scholar

[17] FORGACS, E., CSERHÁTI, T., OROS, G. 2004. Removal of synthetic dyes from wastewaters: a review. Environment International [online]. 30(7), 953–971 [vid. 2019-04-30]. ISSN 0160-4120. Available at: doi:10.1016/J.ENVINT.2004.02.00110.1016/J.ENVINT.2004.02.001Open DOISearch in Google Scholar

[18] HIND, A. R., BHARGAVA, S. K., GROCOTT, S. C. 1999. The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects [online]. 146(1–3), 359–374 [vid. 2019-04-30]. ISSN 0927-7757. Available at: doi:10.1016/S0927-7757(98)00798-510.1016/S0927-7757(98)00798-5Search in Google Scholar

[19] SCHWARZ, M., LALÍK, V. 2011. Biologické účinky, vylúhovateľnosť a testovanie ekotoxicity odpadového kalu z výroby oxidu hlinitého (Biological effects, leachability and tests of ecotoxicity of waste mud from aluminium oxide producction). Chemické Listy (Chemical letters), 105(7), 518–523.Search in Google Scholar

[20] KAFKA, R., ČAMBÁLOVÁ, L. 2001. Z dejín výroby hliníka na Slovensku (From the history of aluminium production in Slovakia). ISBN 978-80-88892-39-7.Search in Google Scholar

[21] SCHWARZ, M., LALÍK, V., VANEK, M. 2001. Možnosti využitia odpadového kalu z výroby oxidu hlinitého (Options of utilising the waste mud from aluminium oxide production). Chemické Listy (Chemical letters), 105(7), 114–121.Search in Google Scholar

[22] MICHAELI, E. 2012. Skládka priemyselného odpadu lúženca ako príklad environmentálnej záťaže pri bývalej Niklovej huti Sereď (The landfill of industrial waste of black nickle mud near the former Nickel Smelter in Sereď as an example of environmental burden). Životné prostredie, 62(2), 63–68.Search in Google Scholar

[23] MICHAELI, E., BOLTIŽIAR, M. 2010. Vybrané lokality environmentálnych záťaží v Slovenskej republike (Selected localities of environmental burdens in the Slovak Republic). GEOGRAPHIA CASSOVIENSIS, 4(2), 114–119.Search in Google Scholar

[24] SOLDÁNOVÁ, Z., SOLDÁN, M., ČAPLOVIČ, Ľ. 2009. Štúdium kinetiky adsorpcie CrVI červeným kalom a lúžencom (Study of CrVI adsorption kinetics by the red mud and black nickle mud). Waste forum, 2, 58–65.Search in Google Scholar

eISSN:
1338-0532
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other