Cite

1. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997; 127:990S. https://doi.org/10.1093/jn/127.5.990S.10.1093/jn/127.5.990S9164280Open DOISearch in Google Scholar

2. Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017; 36:49e64. https://doi.org/10.1016/j.clnu.2016.09.004.10.1016/j.clnu.2016.09.00427642056Open DOISearch in Google Scholar

3. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010; 39:412e23. https://doi.org/10.1093/ageing/afq034.10.1093/ageing/afq034288620120392703Open DOISearch in Google Scholar

4. Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017; 12:e0186990. https://doi.org/10.1371/journal.pone.0186990.10.1371/journal.pone.0186990565545429065187Search in Google Scholar

5. Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J et al. Inclusion of sarcopenia within MELD (MELDSarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015; 6:e102.10.1038/ctg.2015.31481625926181291Search in Google Scholar

6. Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hep Intl. 2018; 12:377–86.2988199210.1007/s12072-018-9875-929881992Search in Google Scholar

7. van Vugt JLA, Buettner S, Alferink LJM et al. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation-a retrospective study. Transpl Int. 2018; 31:165–74.10.1111/tri.1304828871624Open DOISearch in Google Scholar

8. Ha Y, Kim D, Han S et al. Sarcopenia Predicts prognosis in patients with newly diagnosed hepatocellular carcinoma, independent of tumor stage and liver function. Cancer Res Treat. 2018; 50:843–51.10.4143/crt.2017.232605695828882021Search in Google Scholar

9. Montano-Loza AJ. Skeletal muscle abnormalities and outcomes after liver transplantation. Liver Transpl. 2014; 20:1293–5.10.1002/lt.2399525212893Search in Google Scholar

10. Tsien C, Davuluri G, Singh D et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015; 61:2018–29.10.1002/hep.27717444161125613922Search in Google Scholar

11. Qiu J, Thapaliya S, Runkana A et al. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-kappaB-mediated mechanism. Proc Natl Acad Sci USA. 2013; 110:18162–7.10.1073/pnas.1317049110Search in Google Scholar

12. Sinclair M, Gow PJ, Grossmann M, Angus PW. Review article: sarcopenia in cirrhosis - aetiology, implications and potential therapeutic interventions. Aliment Pharmacol Ther. 2016; 43:765e77. https://doi.org/10.1111/apt.13549.10.1111/apt.13549Open DOISearch in Google Scholar

13. Thapaliya S, Runkana A, McMullen MR et al. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy. 2014; 10:677–90.10.4161/auto.27918Search in Google Scholar

14. Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012; 27:430–41.10.1111/j.1440-1746.2011.06951.xSearch in Google Scholar

15. Trovato F, Aiello F, Larocca L, Taylor-Robinson S. The role of physical activity and nutrition in the sarcopenia of cirrhosis. J Funct Morphol Kinesiol. 2016; 1:118e25. https://doi.org/10.3390/jfmk1010118.10.3390/jfmk1010118Open DOISearch in Google Scholar

16. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016; 65:1232e44. https://doi.org/10.1016/j.jhep.2016.07.040.10.1016/j.jhep.2016.07.040Open DOISearch in Google Scholar

17. Dam G, Sorensen M, Buhl M et al. Muscle metabolism, and whole blood amino acid profile in patients with liver disease. Scand J Clin Lab Invest. 2015; 75:674–80.Search in Google Scholar

18. Loguercio C, Sava E, Marmo R, del Vecchio Blanco C, Coltorti M. Malnutrition in cirrhotic patients: anthropometric measurements as a method of assessing nutritional status. Brit J Clin Pract. 1990; 44:98–101.Search in Google Scholar

19. Leong D, Teo K, Rangarajan S. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015; 386:266–73.10.1016/S0140-6736(14)62000-6Search in Google Scholar

20. Erlandson MC, Lorbergs AL, Mathur S, Cheung AM. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol. 2016; 85:1505-1511.10.1016/j.ejrad.2016.03.00127005009Search in Google Scholar

21. Sergi G, Trevisan C, Veronese N, Lucato P, Manzato E. Imaging of sarcopenia. Eur J Radiol. 2016; 85:1519-1524.10.1016/j.ejrad.2016.04.00927117135Search in Google Scholar

22. Giusto M, Lattanzi B, Albanese C et al. Sarcopenia in liver cirrhosis: the role of computed tomography scan for the assessment of muscle mass compared with dual-energy X-ray absorptiometry and anthropometry. Eur J Gastro Hepatol. 2015; 27:328–34.10.1097/MEG.000000000000027425569567Search in Google Scholar

23. Dichi JB, Dichi I, Maio R et al. Wholebody protein turnover in malnourished patients with child class B and C cirrhosis on diets low to high in protein energy. Nutrition. 2001; 17:239–42.10.1016/S0899-9007(00)00567-0Search in Google Scholar

24. 24. Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012; 27:430–41.10.1111/j.1440-1746.2011.06951.x22004479Search in Google Scholar

25. Dasarathy S. Etiology and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol. 2016; 32:159e65. https://doi.org/10.1016/j.coviro.2015.09.001 [Human].10.1016/j.coviro.2015.09.001[]Open DOISearch in Google Scholar

26. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016; 65:1232e44. https://doi.org/10.1016/j.jhep.2016.07.040.10.1016/j.jhep.2016.07.040511625927515775Open DOISearch in Google Scholar

27. Kawaguchi T, Taniguchi E, Sata M. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis. Nutr Clin Pract. 2013; 28:580e8. https://doi.org/10.1177/.Search in Google Scholar

28. Gluud LL, Dam G, Les I, Cordoba J, Marchesini G, Borre M et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD001939.10.1002/14651858.CD00193912804416Open DOISearch in Google Scholar

29. Moctezuma-Velazquez C, Low G, Mourtzakis M et al. Association between low testosterone levels and sarcopenia in cirrhosis: a cross-sectional study. Ann Hepatol. 2018; 17:615–23.10.5604/01.3001.0012.093029893704Open DOISearch in Google Scholar

30. Lang CH, Frost RA, Svanberg E, Vary TC. IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, eIF4E availability, and myostatin in alcohol fed rats. Am J Physiol Endocrinol Metab. 2004; 286:E916–26.10.1152/ajpendo.00554.200314749210Search in Google Scholar

eISSN:
2544-8978
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Surgery, Orthopaedic and Trauma Surgery