Cite

1. CAI A, MCCLAFFERTY B, BENSON J, RAMGOBIN D, KALAYANAMITRA R, SHAHID Z, et al. COVID-19: Catastrophic Cause of Acute Lung Injury. S D Med. 2020; 73(6):252–260.Search in Google Scholar

2. CARSANA L, SONZOGNI A, NASR A, ROSSI RS, PELLEGRINELLI A, ZERBI P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study [published online ahead of print, 2020 Jun 8]. Lancet Infect Dis. 2020;S1473-3099(20)30434-5. doi:10.1016/S1473-3099(20)30434-5.10.1016/S1473-3099(20)30434-5Search in Google Scholar

3. CONNORS JM, LEVY JH. Thromboinflammation and the hypercoagulability of COVID-19. J Thromb Haemost. 2020; 18(7):1559–1561. doi:10.1111/jth.14849.10.1111/jth.1484932302453Search in Google Scholar

4. ACKERMANN M, VERLEDEN SE, KUEHNEL M, HAVERICH A, WELTE T, LAENGER F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020; 383(2):120–128. doi:10.1056/NEJMoa2015432.10.1056/NEJMoa2015432741275032437596Search in Google Scholar

5. BILALOGLU S, APHINYANAPHONGS, JONES S, ITURRATE E, HOCHMAN J, BERGER JS. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System [published online ahead of print, 2020 Jul 20]. JAMA. 2020; e2013372. doi:10.1001/jama.2020.13372.10.1001/jama.2020.13372737250932702090Search in Google Scholar

6. MIDDELDORP S, COPPENS M, VAN HAAPS TF, FOPPEN M, VLAAR AP, MULLER MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19 [published online ahead of print, 2020 May 5]. J Thromb Haemost. 2020; doi:10.1111/jth.14888. doi:10.1111/jth.14888.10.1111/jth.14888749705232369666Search in Google Scholar

7. LODIGIANI C, IAPICHINO G, CARENZO L, CECCONI M, FERRAZZI P, SEBASTIAN T et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020; 191:9–14. doi:10.1016/j.thromres.2020.04.024.10.1016/j.thromres.2020.04.024717707032353746Search in Google Scholar

8. OXLEY TJ, MOCCO J, MAJIDI S, KELLNER CP, SHOIRAH H, SINGH IP, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020; 382(20):e60. doi:10.1056/NEJMc2009787.10.1056/NEJMc2009787720707332343504Search in Google Scholar

9. KLOK FA, KRUIP MJHA, VAN DER MEER NJM, ARBOUS MS, GOMMERS DAMPJ, KANT KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191:145–147. doi:10.1016/j.thromres.2020.04.013.10.1016/j.thromres.2020.04.013714671432291094Search in Google Scholar

10. LEMKE G, SILVERMAN GJ. Blood clots and TAM receptor signalling in COVID-19 pathogenesis. Nat Rev Immunol. 2020; 20(7):395–396. doi:10.1038/s41577-020-0354-x.10.1038/s41577-020-0354-x726496832488201Search in Google Scholar

11. XIE J, COVASSIN N, FAN Z, SINGH P, GAO W, LI G, et al. Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clin Proc. 2020; 95(6):1138–1147. doi:10.1016/j.mayocp.2020.04.006.10.1016/j.mayocp.2020.04.006715146832376101Search in Google Scholar

12. LLITJOS JF, LECLERC M, CHOCHOIS C, MONSALLIER JM, RAMAKAS M, AUVRAY M, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020; 18(7):1743–1746. doi:10.1111/jth.14869.10.1111/jth.14869Search in Google Scholar

13. ABOU-ISMAIL MY, DIAMOND A, KAPOOR S, ARAFAH Y, NAYAK L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 2020; 194:101–115. doi:10.1016/j.thromres.2020.06.029.10.1016/j.thromres.2020.06.029Search in Google Scholar

14. LEMKE G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol. 2013; 5(11):a009076. Published 2013 Nov 1. doi:10.1101/cshperspect.a009076.10.1101/cshperspect.a009076Search in Google Scholar

15. VARGA Z, FLAMMER AJ, STEIGER P, HABERECKER M, ANDERMATT R, ZINKERNAGEL AS, et al. Endothelial cell infection and endothelitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi:10.1016/S0140-6736(20)30937-5.10.1016/S0140-6736(20)30937-5Search in Google Scholar

16. BURSTYN-COHEN T, HEEB MJ, LEMKE G. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J Clin Invest. 2009; 119(10):2942–2953. doi:10.1172/JCI39325.10.1172/JCI39325Search in Google Scholar

17. BOULLANGER N, El KOURI D, TROSSAERT M, TRUCHAUD F, TREWICK D, PLANCHON B. Coagulation activation in patients with an inflammatory syndrome: is there a link with acquired protein S deficiency? Blood Coagulation & Fibrinolysis: an International Journal in Haemostasis and Thrombosis. 1998 Mar; 9(2):167–171. DOI: 10.1097/00001721-199803000-00007.10.1097/00001721-199803000-00007Search in Google Scholar

18. STAHL CP, WIDEMAN CS, SPIRA TJ, HAFF EC, HIXON GJ, EEVATT BL. Protein S deficiency in men with long-term human immunodeficiency virus infection. Blood. 1993; 81(7):1801–1807.10.1182/blood.V81.7.1801.1801Search in Google Scholar

19. MALIA RG, KITCHEN S, GREAVES M, PRESTON FE. Inhibition of activated protein C and its cofactor protein S by antiphospholipid antibodies. Br J Haematol. 1990; 76(1):101–107. doi:10.1111/j.1365-2141.1990.tb07843.x.10.1111/j.1365-2141.1990.tb07843.xSearch in Google Scholar

20. SORICE M, GRIGGI T, ARICIERI P, CIRCELLA A, D’AGOSTINO F, RANIERI M, et al. Protein S and HIV infection. The role of anticardiolipin and anti-protein S antibodies. Thromb Res. 1994; 73(3–4):165–175. doi:10.1016/0049-3848(94)90095-7.10.1016/0049-3848(94)90095-7Search in Google Scholar

21. ERBE M, RICKERTS V, BAUERSACHS RM, LINDHOFF-LAST E. Acquired protein C and protein S deficiency in HIV-infected patients. Clin Appl Thromb Hemost. 2003; 9(4):325–331. doi:10.1177/107602960300900408.10.1177/10760296030090040814653442Search in Google Scholar

22. FEDAK KM, BERNAL A, CAPSHAW ZA, GROSS S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol. 2015; 12:14. Published 2015 Sep 30. doi:10.1186/s12982-015-0037-4.10.1186/s12982-015-0037-4458911726425136Search in Google Scholar

23. FAN BE, CHONG VCL, CHAN SSW, LIM GH, LIM KGE, TAN GB, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020; 95(6):E131–E134. doi:10.1002/ajh.25774.10.1002/ajh.2577432129508Search in Google Scholar

24. KONG M, ZHANG H, CAO X, MAO X, LU Z. Higher level of neutrophil-to-lymphocyte is associated with severe COVID-19. Epidemiol Infect. 2020; 148:e139. Published 2020 Jul 9. doi:10.1017/S0950268820001557.10.1017/S0950268820001557736095032641174Search in Google Scholar

25. TWADELL SH, BAINES KJ, GRAINGE C, GIBSON PG. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 2019; 156(4):774–782. doi:10.1016/j.chest.2019.06.012.10.1016/j.chest.2019.06.01231265835Search in Google Scholar

26. PORTO BN, STEIN RT. Neutrophil Extracellular Traps in Pulmonary Diseases: Too Much of a Good Thing?. Front Immunol. 2016; 7:311. Published 2016 Aug 15. doi:10.3389/fimmu.2016.00311.10.3389/fimmu.2016.00311498361227574522Search in Google Scholar

27. PFEILER S, MASSBERG S, ENGELMANN B. Biological basis and pathological relevance of microvascular thrombosis. Thromb Res. 2014; 133 Suppl 1:S35–S37. doi:10.1016/j.thromres.2014.03.016.10.1016/j.thromres.2014.03.01624759139Search in Google Scholar

28. ZUO Y, YALAVARTHI S, SHI H, GOCKMAN K, ZUO M, MADISON JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5(11):e138999. Published 2020 Jun 4. doi:10.1172/jci.insight.138999.10.1172/jci.insight.138999730805732329756Search in Google Scholar

eISSN:
2501-062X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Rheumatology