Open Access

Accuracy of the application of mobile technologies for measurements made in headings of the Kłodawa Salt Mine


Cite

Adamek, A. (2015). Mobilna Platforma Górnicza (MPG) – nowatorskim rozwiązaniem w polskich kopalniach (Mobile Mining Platform – an innovative solution in Polish mines). Archiwum Fotogrametrii, Kartografii i Teledetekcji, pages 11–24, doi:10.14681/afkit.2015.001. Search in Google Scholar

Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3):83–94, doi:10.1016/s0924-2716(99)00014-3. Search in Google Scholar

Błaszczak-Bąk, W., Suchocki, C., Kozakiewicz, T., and Janicka, J. (2023). Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. Measurement, 219:113286, doi:10.1016/j.measurement.2023.113286. Search in Google Scholar

Benito-Calvo, A., Gutiérrez, F., Martínez-Fernández, A., Carbonel, D., Karampaglidis, T., Desir, G., Sevil, J., Guerrero, J., Fabregat, I., and García-Arnay, A. (2018). 4D monitoring of Active Sinkholes with a Terrestrial Laser Scanner (TLS): A case study in the Evaporite Karst of the Ebro Valley, NE Spain. Remote Sensing, 10(4):571, doi:10.3390/rs10040571. Search in Google Scholar

Bieniasz, J., Ciągło, W., and Wojnar, W. (2003). Nowa metoda pomiarów deformacji solnej struktury filarowo-komorowej wykorzystująca dalmierz laserowy (A new method for measuring the deformation of a salt pillar-chamber structure using a laser rangefinder). Geodezja/Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 9(2/1):187–193. Search in Google Scholar

Bieniasz, J. and Wojnar, W. (2007). Zarys historii pomiarów i wybrane wyniki obserwacji zjawiska konwergencji wyrobisk w pokładowych złożach soli (An outline of the history of measurements and selected results of observations of the phenomenon of convergence of workings in seam salt deposits). Gospodarka Surowcami Mineralnymi, 23:133–142. Search in Google Scholar

Corradetti, A., Seers, T., Billi, A., and Tavani, S. (2021). Virtual outcrops in a pocket: The smartphone as a fully equipped photogrammetric data acquisition tool. GSA Today, 31(9):4–9, doi:10.1130/gsatg506a.1. Search in Google Scholar

Dorninger, P., Nothegger, C., Pfeifer, N., and Molnár, G. (2008). On-the-job detection and correction of systematic cyclic distance measurement errors of terrestrial laser scanners. Journal of Applied Geodesy, 2(4), doi:10.1515/jag.2008.022. Search in Google Scholar

El-Din Fawzy, H. (2019).Study the accuracy of digital close range photogrammetry technique software as a measuring tool. Alexandria Engineering Journal, 58(1):171–179, doi:10.1016/j.aej.2018.04.004. Search in Google Scholar

Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A. (2021). Measurement of forest inventory parameters with Apple iPad Pro and integrated LiDAR technology. Remote Sensing, 13(16):3129, doi:10.3390/rs13163129. Search in Google Scholar

Huang, X., Zhang, Y., and Xiong, Z. (2021). High-speed structured light based 3D scanning using an event camera. Optics Express, 29(22):35864, doi:10.1364/oe.437944. Search in Google Scholar

Jankowska, I. and Kwaśniak, M. (2015). Rola dokładności wyznaczania konwergencji wyrobisk w aspekcie zagospodarowania pustek poeksploatacyjnych w kopalniach soli (Role of accuracy in determining the convergence of workings with regard to managing post-excavation spaces in salt mines). In Kwaśniak, M., editor, Techniki inwentaryzacji i monitoringu obiektów inżynierskich, pages 32–43. Warsaw University of Technology, Faculty of Geodesy and Cartography, Engineering Geodesy and Control Surveying Systems. Search in Google Scholar

Jaud, M., Kervot, M., Delacourt, C., and Bertin, S. (2019). Potential of smartphone SfM photogrammetry to measure coastal morpho-dynamics. Remote Sensing, 11(19):2242, doi:10.3390/rs11192242. Search in Google Scholar

Kortas, G., Szewczyk, J., and Toboła, T. (2004). Ruch górotworu i powierzchni w otoczeniu zabytkowych kopalń soli (Movement of the rock mass and surface in the vicinity of historic salt mines). Wydaw. Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN. Search in Google Scholar

Kottner, S., Thali, M. J., and Gascho, D. (2023). Using the iPhone’s LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging, 32:200535, doi:10.1016/j.fri.2023.200535. Search in Google Scholar

Kukutsch, R., Kajzar, V., Konicek, P., Waclawik, P., and Ptacek, J. (2015). Possibility of convergence measurement of gates in coal mining using terrestrial 3D laser scanner. Journal of Sustainable Mining, 14(1):30–37, doi:10.1016/j.jsm.2015.08.005. Search in Google Scholar

Kunstman, A., Poborska-Młynarska, K., and Urbańczyk, K. (2002). Zarys otworowego ługownictwa solnego: aktualne kierunki rozwoju (Outline of borehole salt leaching: current development directions). AGH Akademia Górniczo-Hutnicza, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Karków. Search in Google Scholar

Kurdek, D. (2020). Pomiary konwergencji wyrobisk chodnikowych w Kopalni Soli „Kłodawa” S.A. (Convergence measurements of drift excavation in Salt Mine „Kłodawa” S.A). Salt Review, 15:56–61. Search in Google Scholar

Lipecki, T., Jaśkowski, W., Gruszczyński, W., Matwij, K., Matwij, W., and Ulmaniec, P. (2016). Inventory of the geometric condition of inanimate nature reserve Crystal Caves in “Wieliczka” Salt Mine. Acta Geodaetica et Geophysica, 51:257–272, doi:10.1007/s40328-015-0125-5. Search in Google Scholar

Lipecki, T. and Thi Thu Huong, K. (2020). The development of terrestrial laser scanning technology and its applications in mine shafts in Poland. Inżynieria Mineralna, 1(2), doi:10.29227/im-2020-02-36. Search in Google Scholar

Litoński, A. (1960). Przepisy technicznej eksploatacji kopalń soli (Regulations on the technical operation of salt mines). Technical report, Ministerstwo Przemysłu Chemicznego, Wydawnictwo Górniczo–Hutnicze, Katowice, Poland. Search in Google Scholar

Lohani, B. and Ghosh, S. (2017). Airborne LiDAR technology: A review of data collection and processing systems. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87(4):567–579, doi:10.1007/s40010-017-0435-9. Search in Google Scholar

Maj, A. (2011). Konwergencja w warunkach nieregularnie rozproszonych wyrobisk, na przykładzie kopalni wieliczka (Convergence in conditions of irregularly dispersed workings, on the example of the Wieliczka mine). Prace Instytutu Mechaniki Górotworu PAN, 13(1-4):121–130. Search in Google Scholar

Maj, A. and Florkowska, L. (2013). Obserwacja oddziaływania wyrobisk na powierzchnię terenu w warunkach kopalń soli (Observation of the impact of excavations on the ground surface in the conditions of salt mines). Prace Instytutu Mechaniki Górotworu PAN, 15(3-4):107–113. Search in Google Scholar

Miller, S. H., Hashemian, A., Gillihan, R., and Helms, E. (2022). A comparison of mobile phone LiDAR capture and established ground based 3D scanning methodologies. In SAE Technical Paper Series, ANNUAL. SAE International, doi:10.4271/2022-01-0832. Search in Google Scholar

Ochalek, A. (2018). Analysis of convergence and deformation measurements based on classical geodetic surveys and terrestrial laser scanning in Wieliczka salt mine. In 18th International Multidisciplinary Scientific GeoConference SGEM2018, Informatics, Geoinformatics and Remote Sensing, SGEM2018. Stef92 Technology, doi:10.5593/sgem2018/2.2/s09.073. Search in Google Scholar

Pearson, K. (1896). Mathematical contributions to the theory of evolution. iii. regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, (187):253–318. Search in Google Scholar

Poborska-Młynarska, K. (2022). Geologiczno-górnicze warunki eksploatacji w kopalniach podziemnych w wysadach solnych Polski środkowej (Geological and mining operating conditions in underground mines in salt domes in central Poland). AGH Akademia Górniczo-Hutnicza, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Karków. Search in Google Scholar

Regulation (1970). Zarządzenie zewnętrzne nr 18 Naczelnego Dyrektora Kopalni Soli „Kłodawa” z dnia 1 kwietnia 1970 r. dotyczące wprowadzenia „instrukcji/tymczasowej/ w sprawie określenia stanu zagrożenia wodnego kopalni oraz organizacji środków i służby dla ochrony załogi i ruchu kopalni” (External Order No. 18 of the General Director of the “Kłodawa” Salt Mine of April 1, 1970 regarding the introduction of “temporary instructions on determining the state of water hazard in the mine and organizing measures and services to protect the crew and mine operations”). Search in Google Scholar

Rutkowski, W. and Lipecki, T. (2023). Use of the iPhone 13 Pro LiDAR scanner for inspection and measurement in the mineshaft sinking process. Remote Sensing, 15(21):5089, doi:10.3390/rs15215089. Search in Google Scholar

Sapirstein, P. (2016). Accurate measurement with photogrammetry at large sites. Journal of Archaeological Science, 66:137–145, doi:10.1016/j.jas.2016.01.002. Search in Google Scholar

Stoica, P. and Moses, R. L. (2005). Spectral analysis of signals, volume 452. Pearson Prentice Hall Upper Saddle River, NJ. Search in Google Scholar

Suchocki, C., Katzer, J., and Panuś, A. (2017). Remote sensing to estimate saturation differences of chosen building materials using terrestrial laser scanner. Reports on Geodesy and Geoinformatics, 103(1):94–105, doi:10.1515/rgg-2017-0008. Search in Google Scholar

Suchocki, C., Okrój, S., and Błaszczak-Bąk, W. (2023). Methodology for the measurement and 3D modelling of cultural heritage: a case study of the monument to the Polish Diaspora Bond with the Homeland. Reports on Geodesy and Geoinformatics, 116(1):1–8, doi:10.2478/rgg-2023-0005. Search in Google Scholar

Świerczyńska, E. (2020). Reprezentatywność kształtu obiektu odwzorowanego za pomocą “chmury punktów” – analiza na podstawie danych z technologii wideotachimetrycznej (Representativeness of the shape of an object mapped using a “point cloud” – analysis based on data from video tachymetry technology). Przegląd Geodezyjny, 1(4):23–27, doi:10.15199/50.2020.4.3. Search in Google Scholar

Świerczyńska, E. and Kołakowska, M. (2014). The attempt to use levelling rods for testing metric properties of surveying instruments, which are used for reflectorless distance measurements. Reports on Geodesy and Geoinformatics, 96(1):38–54, doi:10.2478/rgg-2014-0005. Search in Google Scholar

Szafarczyk, A. and Gawałkiewicz, R. (2018). Defining the cubature changes of historic St. Kinga Chamber in Bochnia salt mine, using laser scanning technology. E3S Web of Conferences, 35:04006, doi:10.1051/e3sconf/20183504006. Search in Google Scholar

Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F. (2022). Apple LiDAR sensor for 3D surveying: Tests and results in the cultural heritage domain. Remote Sensing, 14(17):4157, doi:10.3390/rs14174157. Search in Google Scholar

Teukolsky, S. A., Flannery, B. P., Press, W., and Vetterling, W. (1992). Numerical recipes in c. SMR, 693(1):59–70. Search in Google Scholar

Woźniak, M., Świerczyńska, E., and Jastrzębski, S. (2015). The use of video-tacheometric technology for documenting and analysing geometric features of objects. Reports on Geodesy and Geoinformatics, 99(1):28–43, doi:10.2478/rgg-2015-0010. Search in Google Scholar

Zaczek-Peplinska, J. (2023). Pomiary inwetaryzacyjne z wykorzystaniem Apple iPhone 13 Pro i zintegrowanej technologii LiDAR (Inventory measurements using Apple iPhone 13 Pro and integrated LiDAR technology). Przegląd Geodezyjny, 1(2):16–19, doi:10.15199/50.2023.02.1. Search in Google Scholar

eISSN:
2391-8152
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Computer Sciences, other, Geosciences, Geodesy, Cartography and Photogrammetry