Open Access

Artificial intelligence in musculoskeletal oncological radiology


Cite

Ha n X-G, Tian W. Artificial intelligence in orthopedic surgery: current state and future perspective. Chin Med J (Engl) 2019; 132: 2521-3. doi: 10.1097/ CM9.0000000000000479HanX-GTianWArtificial intelligence in orthopedic surgery: current state and future perspectiveChin Med J (Engl)20191322521310.1097/CM9.0000000000000479684626331658155Open DOISearch in Google Scholar

Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions. AJR Am J Roentgenol 2019; 213: 506-13. doi: 10.2214/AJR.19.21117GyftopoulosSLinDKnollFDoshiAMRodriguesTCRechtMPArtificial intelligence in musculoskeletal imaging: current status and future directionsAJR Am J Roentgenol20192135061310.2214/AJR.19.21117670628731166761Open DOISearch in Google Scholar

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436-44. doi: 10.1038/nature14539LeCunYBengioYHintonGDeep learningNature20155214364410.1038/nature1453926017442Open DOISearch in Google Scholar

King BF. Guest editorial: discovery and artificial intelligence. ARJ Am J Roentgenol 2017; 209: 1189-90. doi: 10.2214/AJR.17.19178KingBFGuest editorial: discovery and artificial intelligenceARJ Am J Roentgenol201720911899010.2214/AJR.17.1917829161146Open DOISearch in Google Scholar

Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2018; 2: 35. doi: 10.1186/s41747-018-0061-6PesapaneFCodariMSardanelliFArtificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicineEur Radiol Exp201823510.1186/s41747-018-0061-6619920530353365Open DOISearch in Google Scholar

Daldrup-Link H. Artificial intelligence applications for pediatric oncology imaging. Pediatr Radiol 2019; 49: 1384-90. doi: 10.1007/s00247-019-04360-1Daldrup-LinkH.Artificial intelligence applications for pediatric oncology imagingPediatr Radiol20194913849010.1007/s00247-019-04360-1682013531620840Open DOISearch in Google Scholar

Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: current applications and future directions. PLoS Med 2018; 15: e1002707. doi: 10.1371/journal.pmed.1002707YasakaKAbeODeep learning and artificial intelligence in radiology: current applications and future directionsPLoS Med201815e100270710.1371/journal.pmed.1002707626795130500815Open DOISearch in Google Scholar

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18: 500-10. doi: 10.1038/ s41568-018-0016-5HosnyAParmarCQuackenbushJSchwartzLHAertsHJWLArtificial intelligence in radiologyNat Rev Cancer2018185001010.1038/s41568-018-0016-5626817429777175Open DOISearch in Google Scholar

Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278: 563-77. doi: 10.1148/ra-diol.2015151169GilliesRJKinahanPEHricakHRadiomics: images are more than pictures, they are dataRadiology20162785637710.1148/ra-diol.2015151169Open DOISearch in Google Scholar

Koçak B, Durmaz EŞ, Ateş E, Kılıçkesmez Ö. Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol 2019; 25: 485-95. doi: 10.5152/dir.2019.19321KoçakBDurmazAteşEKılıçkesmezÖRadiomics with artificial intelligence: a practical guide for beginnersDiagn Interv Radiol2019254859510.5152/dir.2019.19321683729531650960Open DOISearch in Google Scholar

Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol 2019; 23: 304-11. doi: 10.1055/s-0039-1684024HirschmannACyriacJStieltjesBKoberTRichiardiJOmoumiPArtificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trendsSemin Musculoskelet Radiol2019233041110.1055/s-0039-168402431163504Open DOISearch in Google Scholar

Bruno MA, Walker EA, Abujudeh HH. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. RadioGraphics 2015; 35: 1668-76. doi: 10.1148/rg.2015150023BrunoMAWalkerEAAbujudehHHUnderstanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reductionRadioGraphics20153516687610.1148/rg.201515002326466178Open DOISearch in Google Scholar

Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 2019; 69: 127-57. doi: 10.3322/caac.21552BiWLHosnyASchabathMBGigerMLBirkbakNJMehrtashAArtificial intelligence in cancer imaging: clinical challenges and applicationsCA Cancer J Clin2019691275710.3322/caac.21552640300930720861Open DOISearch in Google Scholar

Takahashi R, Kajikawa Y. Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inform 2017; 101: 58-67. doi: 10.1016/j.ijmedinf.2017.02.004TakahashiRKajikawaYComputer-aided diagnosis: a survey with bibliometric analysisInt J Med Inform2017101586710.1016/j.ijmedinf.2017.02.00428347448Open DOISearch in Google Scholar

Katzen J, Dodelzon K. A review of computer aided detection in mammography. Clin Imaging 2018; 52: 305-9. doi: 10.1016/j.clinimag.2018.08.014KatzenJDodelzonKA review of computer aided detection in mammographyClin Imaging201852305910.1016/j.clinimag.2018.08.01430216858Open DOISearch in Google Scholar

Al Mohammad B, Brennan PC, Mello-Thoms C. A review of lung cancer screening and the role of computer-aided detection. Clin Radiol 2017; 72: 433-42. doi: 10.1016/j.crad.2017.01.002Al MohammadBBrennanPCMello-ThomsCA review of lung cancer screening and the role of computer-aided detectionClin Radiol2017724334210.1016/j.crad.2017.01.00228185635Open DOISearch in Google Scholar

Regge D, Halligan S. CAD: How it works, how to use it, performance. Eur J Radiol 2013; 82: 1171-6. doi: 10.1016/j.ejrad.2012.04.022ReggeDHalliganSCAD: How it works, how to use it, performanceEur J Radiol2013821171610.1016/j.ejrad.2012.04.02222595503Open DOISearch in Google Scholar

Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learning in radiology practice and research. AJR Am J Roentgenol 2017; 208: 754-60. doi: 10.2214/AJR.16.17224KohliMPrevedelloLMFiliceRWGeisJRImplementing machine learning in radiology practice and researchAJR Am J Roentgenol20172087546010.2214/AJR.16.1722428125274Open DOISearch in Google Scholar

Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med 2011; 3: 108ra113. doi: 10.1126/ scitranslmed.3002564BeckAHSangoiARLeungSMarinelliRJNielsenTOvan de VijverMJSystematic analysis of breast cancer morphology uncovers stromal features associated with survivalSci Transl Med2011310.1126/scitranslmed.300256422072638Open DOISearch in Google Scholar

Afifi A, Nakaguchi T. Unsupervised detection of liver lesions in CT images. Annu Conf IEEE Eng Med Biol Soc 2015; 2015: 2411-4. doi: 10.1109/ EMBC.2015.7318880AfifiANakaguchiTUnsupervised detection of liver lesions in CT imagesAnnu Conf IEEE Eng Med Biol Soc201520152411410.1109/EMBC.2015.731888026736780Open DOISearch in Google Scholar

Zhang M, Young GS, Chen H, Li J, Qin L, McFaline-Figueroa JR, et al. Deep-learning detection of cancer metastases to the brain on MRI. J Magn Reson Imaging 2020: 52: 1227-36. doi: 10.1002/jmri.27129ZhangMYoungGSChenHLiJQinLMcFaline-FigueroaJRDeep-learning detection of cancer metastases to the brain on MRIJ Magn Reson Imaging20205212273610.1002/jmri.27129748702032167652Open DOISearch in Google Scholar

Li XA, Tai A, Arthur DW, Buchholz TA, MacDonald S, Marks LB, et al. Variability of target and normal structure delineation for breast-cancer radiotherapy: a RTOG multi-institutional and multi-observer study. Int J Radiat Oncol Biol Phys 2009; 73: 944-51. doi: 10.1016/j.ijrobp.2008.10.034LiXATaiAArthurDWBuchholzTAMacDonaldSMarksLBVariability of target and normal structure delineation for breast-cancer radiotherapy: a RTOG multi-institutional and multi-observer studyInt J Radiat Oncol Biol Phys2009739445110.1016/j.ijrobp.2008.10.034291177719215827Open DOISearch in Google Scholar

Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 2016; 35: 1322-31. doi: 10.1109/ TMI.2016.2532122KallenbergMPetersenKNielsenMNgAYDiaoPIgelCUnsupervised deep learning applied to breast density segmentation and mammographic risk scoringIEEE Trans Med Imaging20163513223110.1109/TMI.2016.253212226915120Open DOISearch in Google Scholar

Ye Y, Cai Z, Huang B, He Y, Zeng P, Zou G, et al. Fully-automated segmentation of nasopharyngeal carcinoma on dual-sequence MRI using convolutional neural networks. Front Oncol 2020; in press. doi: 10.3389/fonc.2020.00166YeYCaiZHuangBHeYZengPZouGFully-automated segmentation of nasopharyngeal carcinoma on dual-sequence MRI using convolutional neural networksFront Oncol2020in press10.3389/fonc.2020.00166704589732154168Open DOISearch in Google Scholar

Liu Y, Balagurunathan Y, Atwater T, Antic S, Li Q, Walker RC, et al. Radiological image traits predictive of cancer status in pulmonary nodules. Clin Cancer Res 2017; 23: 1442-9. doi: 10.1158/1078-0432.CCR-15-3102LiuYBalagurunathanYAtwaterTAnticSLiQWalkerRCRadiological image traits predictive of cancer status in pulmonary nodulesClin Cancer Res2017231442910.1158/1078-0432.CCR-15-3102552755127663588Open DOISearch in Google Scholar

Liu SL, Li S, Guo YT, Zhou YP, Zhang ZD, Li S, et al. Establishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural network. Chin Med J (Engl) 2019; 132: 2795-2803. doi: 10.1097/CM9.0000000000000544LiuSLLiSGuoYTZhouYPZhangZDLiSEstablishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural networkChin Med J (Engl)20191322795280310.1097/CM9.0000000000000544694008231856050Open DOISearch in Google Scholar

Song SE, Seo BK, Cho KR, Woo OH, Son GS, Kim C, et al. Computer-aided detection (CAD) system for breast MRI in assessment of local tumor extent, nodal status, and multifocality of invasive breast cancers: preliminary study. Cancer Imaging 2015; 15: 1. doi: 10.1186/s40644-015-0036-2SongSESeoBKChoKRWooOHSonGSKimCComputer-aided detection (CAD) system for breast MRI in assessment of local tumor extent, nodal status, and multifocality of invasive breast cancers: preliminary studyCancer Imaging201515110.1186/s40644-015-0036-2434479725888983Open DOISearch in Google Scholar

Abajian A, Murali N, Savic LJ, Laage-Gaupp FM, Nezami N, Duncan JS, et al. Predicting treatment response to intra-arterial therapies of hepatocellular carcinoma using supervised machine learning - an artificial intelligence concept. J Vasc Interv Radiol 2018; 29: 850-57.e1. doi: 10.1016/j. jvir.2018.01.769AbajianAMuraliNSavicLJLaage-GauppFMNezamiNDuncanJSPredicting treatment response to intra-arterial therapies of hepatocellular carcinoma using supervised machine learning - an artificial intelligence conceptJ Vasc Interv Radiol2018298505710.1016/j.jvir.2018.01.769597002129548875Open DOISearch in Google Scholar

Ha R, Chin C, Karcich J, Liu MZ, Chang P, Mutasa S, et al. Prior to initiation of chemotherapy, can we predict breast tumor response? Deep learning convolutional neural networks approach using a breast MRI tumor dataset. J Digit Imaging 2019; 32: 693-701. doi: 10.1007/s10278-018-0144-1HaRChinCKarcichJLiuMZChangPMutasaSPrior to initiation of chemotherapy, can we predict breast tumor response? Deep learning convolutional neural networks approach using a breast MRI tumor datasetJ Digit Imaging20193269370110.1007/s10278-018-0144-1673712530361936Open DOISearch in Google Scholar

Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 2009; 36: 23-36. doi: 10.1007/s00259-008-0911-1KleisMDaldrup-LinkHMatthayKGoldsbyRLuYSchusterTDiagnostic value of PET/CT for the staging and restaging of pediatric tumorsEur J Nucl Med Mol Imaging200936233610.1007/s00259-008-0911-118719909Open DOISearch in Google Scholar

Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 2016; 7: 48832-41. doi: 10.18632/ oncotarget.9453ChengFSuLQianCCirculating tumor DNA: a promising biomarker in the liquid biopsy of cancerOncotarget20167488324110.18632/oncotarget.9453521705327223063Open DOISearch in Google Scholar

Mader S, Pantel K. Liquid biopsy: current status and future perspectives. Oncol Res Treat 2017; 40: 404-8. doi: 10.1159/000478018MaderSPantelKLiquid biopsy: current status and future perspectivesOncol Res Treat201740404810.1159/00047801828693023Open DOISearch in Google Scholar

Lodwick GS, Haun CL, Smith WE, Keller RF, Robertson ED. Computer diagnosis of primary bone tumors. Radiology 1963; 80: 273-5. doi: 10.1148/80.2.273LodwickGSHaunCLSmithWEKellerRFRobertsonEDComputer diagnosis of primary bone tumorsRadiology196380273510.1148/80.2.273Open DOISearch in Google Scholar

Lodwick GS, Wilson AJ, Farrell C, Virtama P, Dittrich F. Determining growth rates of focal lesions of bone from radiographs. Radiology 1980; 134: 577-83. doi: 10.1148/radiology.134.3.6928321LodwickGSWilsonAJFarrellCVirtamaPDittrichFDetermining growth rates of focal lesions of bone from radiographsRadiology19801345778310.1148/radiology.134.3.69283216928321Open DOISearch in Google Scholar

Reinus WR, Wilson AJ, Kalman B, Kwasny S. Diagnosis of focal bone lesions using neural networks. Invest Radiol 1994; 29: 606-11. doi: 10.1097/00004424-199406000-00002ReinusWRWilsonAJKalmanBKwasnySDiagnosis of focal bone lesions using neural networksInvest Radiol1994296061110.1097/00004424-199406000-000028088968Open DOISearch in Google Scholar

Piraino DW, Amartur SC, Richmond BJ, Schils JP, Thome JM, Belhobek GH, et al. Application of an artificial neural network in radiographic diagnosis. J Digit Imaging 1991; 4: 226. doi: 10.1007/BF03173904PirainoDWAmarturSCRichmondBJSchilsJPThomeJMBelhobekGHApplication of an artificial neural network in radiographic diagnosisJ Digit Imaging1991422610.1007/BF031739041772915Open DOISearch in Google Scholar

Burns JE, Yao J, Wiese TS, Muñoz HE, Jones EC, Summers RM. Automated detection of sclerotic metastases in the thoracolumbar spine at CT. Radiology 2013; 268: 69-78. doi: 10.1148/radiol.13121351BurnsJEYaoJWieseTSMuñozHEJonesECSummersRMAutomated detection of sclerotic metastases in the thoracolumbar spine at CTRadiology2013268697810.1148/radiol.13121351368944423449957Open DOISearch in Google Scholar

Wang J, Fang Z, Lang N, Yuan H, Su M-Y, Baldi P. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput Biol Med 2017; 84: 137-46. doi: 10.1016/j.compbiomed.2017.03.024WangJFangZLangNYuanHSuM-YBaldiPA multi-resolution approach for spinal metastasis detection using deep Siamese neural networksComput Biol Med2017841374610.1016/j.compbiomed.2017.03.024604251128364643Open DOISearch in Google Scholar

Perk T, Bradshaw T, Chen S, Im H, Cho S, Perlman S, et al. Automated classification of benign and malignant lesions in 18F-NaF PET/CT images using machine learning. Phys Med Biol 2018; 63: 225019. doi: 10.1088/1361-6560/aaebd0PerkTBradshawTChenSImHChoSPerlmanSAutomated classification of benign and malignant lesions in 18F-NaF PET/CT images using machine learningPhys Med Biol20186322501910.1088/1361-6560/aaebd030457118Open DOISearch in Google Scholar

Costelloe CM, Madewell JE. Radiography in the initial diagnosis of primary bone tumors. AJR Am J Roentgenol 2013; 200: 3-7. doi: 10.2214/ AJR.12.8488CostelloeCMMadewellJERadiography in the initial diagnosis of primary bone tumorsAJR Am J Roentgenol20132003710.2214/AJR.12.848823255735Open DOISearch in Google Scholar

Ping YY, Yin CW, Kok LP. Computer aided bone tumor detection and classification using x-ray images. In: Abu Osman NA, Ibrahim F, Wan Abas WAB, Abdul Rahman HS, Ting H-N, editors. IFMBE proceedings. 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. Berlin, Heidelberg: Springer; 2008. p. 544-7. doi: 10.1007/978-3-540-69139-6_136PingYYYinCWKokLPComputer aided bone tumor detection and classification using x-ray imagesAbu OsmanNAIbrahimFWan AbasWABAbdul RahmanHSTingH-NIFMBE proceedings. 4th Kuala Lumpur International Conference on Biomedical Engineering 2008Berlin, HeidelbergSpringer2008544710.1007/978-3-540-69139-6_136Open DOISearch in Google Scholar

Bandyopadhyay O, Biswas A, Bhattacharya BB. Bone-cancer assessment and destruction pattern analysis in long-bone x-ray image. J Digit Imaging 2019; 32: 300-13. doi: 10.1007/s10278-018-0145-0BandyopadhyayOBiswasABhattacharyaBBBone-cancer assessment and destruction pattern analysis in long-bone x-ray imageJ Digit Imaging2019323001310.1007/s10278-018-0145-0645664130367308Open DOISearch in Google Scholar

McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, et al. Deep learning in radiology. Acad Radiol 2018; 25: 1472-80. doi: 10.1016/j.acra.2018.02.018McBeeMPAwanOAColucciATGhobadiCWKadomNKansagraAPDeep learning in radiologyAcad Radiol20182514728010.1016/j.acra.2018.02.01829606338Open DOISearch in Google Scholar

Han I, Kim JH, Park H, Kim H-S, Seo SW. Deep learning approach for survival prediction for patients with synovial sarcoma. Tumour Biol 2018; 40: 1010428318799264. doi: 10.1177/1010428318799264HanIKimJHParkHKimH-SSeoSWDeep learning approach for survival prediction for patients with synovial sarcomaTumour Biol201840101042831879926410.1177/101042831879926430261823Open DOISearch in Google Scholar

Reicher JJ, Palo Alto VA, Do BH, Nguyen M, Beaulieu CF. Single-input bone tumor diagnosis based on convolutional neural network classification of bone tumor matrix. SIIM 2018 Annual Meeting, May 31-June 2, National Harbor, MD, 2018.ReicherJJPalo AltoVADoBHNguyenMBeaulieuCFSingle-input bone tumor diagnosis based on convolutional neural network classification of bone tumor matrixSIIM2018Annual Meeting, May 31-June 2National Harbor, MDSearch in Google Scholar

Li Y, Zhou W, Lv G, Luo G, Zhu Y, Liu J. Classification of bone tumor on CT images using deep convolutional neural network. In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I, editors. Lecture notes in computer science. Artificial neural networks and machine learning - ICANN 2018. Cham: Springer International Publishing; 2018. p. 127-36. doi: 10.1007/978-3-030-01421-6_13LiYZhouWLvGLuoGZhuYLiuJClassification of bone tumor on CT images using deep convolutional neural networkKůrkováVManolopoulosYHammerBIliadisLMaglogiannisILecture notes in computer science. Artificial neural networks and machine learning - ICANN 2018ChamSpringer International Publishing20181273610.1007/978-3-030-01421-6_13Open DOISearch in Google Scholar

Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology 2018; 288: 318-28. doi: 10.1148/radiol.2018171820ChoyGKhalilzadehOMichalskiMDoSSamirAEPianykhOSCurrent applications and future impact of machine learning in radiologyRadiology20182883182810.1148/radiol.2018171820654262629944078Open DOISearch in Google Scholar

Gorelik N, Chong J, Lin DJ. Pattern recognition in musculoskeletal imaging using artificial intelligence. Semin Musculoskelet Radiol 2020; 24: 38-49. doi: 10.1055/s-0039-3400266GorelikNChongJLinDJPattern recognition in musculoskeletal imaging using artificial intelligenceSemin Musculoskelet Radiol202024384910.1055/s-0039-340026631991451Open DOISearch in Google Scholar

Burns JE, Yao J, Summers RM. Artificial intelligence in musculoskeletal imaging: a paradigm shift. J Bone Miner Res 2020; 35: 28-35. doi: 10.1002/ jbmr.3849BurnsJEYaoJSummersRMArtificial intelligence in musculoskeletal imaging: a paradigm shiftJ Bone Miner Res202035283510.1002/jbmr.384931398274Open DOISearch in Google Scholar

Jokar N, Velez E, Shooli H, Dadgar H, Sadathosseini S, Assadi M, et al. Advanced modalities of molecular imaging in precision medicine for musculoskeletal malignancies. World J Nucl Med 2019; 18: 345. doi: 10.4103/ wjnm.WJNM_119_18JokarNVelezEShooliHDadgarHSadathosseiniSAssadiMAdvanced modalities of molecular imaging in precision medicine for musculoskeletal malignanciesWorld J Nucl Med20191834510.4103/wjnm.WJNM_119_18694536531933549Open DOISearch in Google Scholar

Hinohara K, Polyak K. Intratumoral heterogeneity: more than just mutations. Trends Cell Biol 2019; 29: 569-79. doi: 10.1016/j.tcb.2019.03.003HinoharaKPolyakKIntratumoral heterogeneity: more than just mutationsTrends Cell Biol2019295697910.1016/j.tcb.2019.03.003657962030987806Open DOISearch in Google Scholar

Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH. Towards precision medicine: from quantitative imaging to radiomics. J Zhejiang Univ Sci B 2018; 19: 6-24. doi: 10.1631/jzus.B1700260AcharyaURHagiwaraYSudarshanVKChanWYNgKHTowards precision medicine: from quantitative imaging to radiomicsJ Zhejiang Univ Sci B20181962410.1631/jzus.B1700260580297329308604Open DOISearch in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology