Cite

Philips A, Henshaw DL, Lamburn G, O’Carroll MJ. Brain tumours: rise in glioblastoma multiforme incidence in England 1995-2015 suggests an adverse environmental or lifestyle factor. J Environ Public Health 2018: 2170208. doi: 10.1155/2018/7910754PhilipsAHenshawDLLamburnGO’CarrollMJBrain tumours: rise in glioblastoma multiforme incidence in England 1995-2015 suggests an adverse environmental or lifestyle factorJ Environ Public Health2018217020810.1155/2018/7910754Open DOISearch in Google Scholar

Molenaar RJ, Maciejewski JP, Wilmink JW, Van Noorden CJF. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018; 37: 1949-60. doi: 10.1038/s41388-017-0077-zMolenaarRJMaciejewskiJPWilminkJWVan NoordenCJFWild-type and mutated IDH1/2 enzymes and therapy responsesOncogene20183719496010.1038/s41388-017-0077-zOpen DOISearch in Google Scholar

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131: 803-20. doi: 10.1007/s00401-016-1545-1LouisDNPerryAReifenbergerGvon DeimlingAFigarella-BrangerDCaveneeWKet alThe 2016 World Health Organization classification of tumors of the central nervous system: a summaryActa Neuropathol20161318032010.1007/s00401-016-1545-1Open DOISearch in Google Scholar

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459-66. doi: 10.1016/S1470-2045(09)70025-7StuppRHegiMEMasonWPvan denBent MJTaphoornMJJanzerRCet alEffects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trialLancet Oncol2009104596610.1016/S1470-2045(09)70025-7Open DOISearch in Google Scholar

Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15: 1100-8. doi: 10.1016/S1470-2045(14)70379-1StuppRHegiMEGorliaTErridgeSCPerryJHongYKet alCilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trialLancet Oncol2014151100810.1016/S1470-2045(14)70379-1Open DOISearch in Google Scholar

Hegi ME, Genbrugge E, Gorlia T, Stupp R, Gilbert MR, Chinot OL, et al. MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: a pooled analysis of four clinical trials. Clin Cancer Res 2018; 25: 1809-16. doi: 10.1158/1078-0432.ccr-18-3181HegiMEGenbruggeEGorliaTStuppRGilbertMRChinotOLet alMGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: a pooled analysis of four clinical trialsClin Cancer Res20182518091610.1158/1078-0432.ccr-18-3181Open DOISearch in Google Scholar

Lathia JD. Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev 2015; 29: 1203-17. doi: 10.1101/gad.261982.115LathiaJDMackSCMulkearns-HubertEEValentimCLRichJNCancer stem cells in glioblastomaGenes Dev20152912031710.1101/gad.261982.115Open DOISearch in Google Scholar

Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010; 60: 166-93. doi: 10.3322/caac.20069Van MeirEGHadjipanayisCGNordenADShuHKWenPYOlsonJJExciting new advances in neuro-oncology: the avenue to a cure for malignant gliomaCA Cancer J Clin2010601669310.3322/caac.20069Open DOISearch in Google Scholar

Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006: 9: 157-73. doi: 10.1016/j.ccr.2006.02.019PhillipsHSKharbandaSChenRForrestWFSorianoRHWuTDet alMolecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesisCancer Cell200691577310.1016/j.ccr.2006.02.019Open DOISearch in Google Scholar

Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98-110. doi: 10.1016/j.ccr.2009.12.020VerhaakRGWHoadleyKAPurdomEWangVQiYWilkersonMDet alIntegrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1Cancer Cell2010179811010.1016/j.ccr.2009.12.020Open DOISearch in Google Scholar

Teng J, da Hora CC, Kantar RS, Nakano I, Wakimoto H, Batchelor TT, et al. Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro Oncol 2017; 19: 820-32. doi: 10.1093/neuonc/now253TengJda HoraCCKantarRSNakanoIWakimotoHBatchelorTTet alDissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture modelsNeuro Oncol2017198203210.1093/neuonc/now253Open DOISearch in Google Scholar

Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of tumour immunity. Nat Rev Cancer 2019; 19: 215-27. doi: 10.1038/s41568-019-0125-9SalmonHRemarkRGnjaticSMeradMHost tissue determinants of tumour immunityNat Rev Cancer2019192152710.1038/s41568-019-0125-9Open DOISearch in Google Scholar

Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 2018; 14: 482-95. doi: 10.1038/s41582-018-0025-8BroekmanMLMaasSLNAbelsERMempelTRKrichevskyAMBreakefieldXOMultidimensional communication in the microenvirons of glioblastomaNat Rev Neurol2018144829510.1038/s41582-018-0025-8Open DOISearch in Google Scholar

Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity 2018; 48: 812-30. e14. doi: 10.1016/j.immuni.2018.03.023ThorssonVGibbsDLBrownSDWolfDBortoneDSOuYang THet alThe immune landscape of cancerImmunity2018488123010.1016/j.immuni.2018.03.023Open DOISearch in Google Scholar

Matias D, Balça-Silva J, da Graça GC, Wanjiru CM, Macharia LW, Nascimento CP, et al. Microglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front Cell Neurosci 2018; 12: 1-22. doi: 10.3389/fncel.2018.00235MatiasDBalça-SilvaJda GraçaGCWanjiruCMMachariaLWNascimentoCPet alMicroglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factorsFront Cell Neurosci20181212210.3389/fncel.2018.00235Open DOISearch in Google Scholar

Motaln H, Koren A, Gruden K, Ramšak Ž, Schichor C, Lah TT. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance. Oncotarget 2015; 6: 40998-1017. doi: 10.18632/oncotarget.5701MotalnHKorenAGrudenKRamšakŽSchichorCLahTTHeterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistanceOncotarget2015640998101710.18632/oncotarget.5701Open DOISearch in Google Scholar

Oliveira MN, Pillat MM, Motaln H, Ulrich H, Lah TT. Kinin-B1 receptor stimulation promotes invasion and is involved in cell-cell interaction of co-cultured glioblastoma and mesenchymal stem cells. Sci Rep 2018; 8: 1299. doi: 10.1038/s41598-018-19359-1OliveiraMNPillatMMMotalnHUlrichHLahTTKinin-B1 receptor stimulation promotes invasion and is involved in cell-cell interaction of co-cultured glioblastoma and mesenchymal stem cellsSci Rep20188129910.1038/s41598-018-19359-1Open DOISearch in Google Scholar

Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 240-50. doi: 10.1038/nrc1388BalkwillFCancer and the chemokine networkNat Rev Cancer200442405010.1038/nrc1388Open DOISearch in Google Scholar

Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 2010; 16: 133-44. doi: 10.1016/j.molmed.2010.01.003LazennecGRichmondAChemokines and chemokine receptors: new insights into cancer-related inflammationTrends Mol Med2010161334410.1016/j.molmed.2010.01.003Open DOISearch in Google Scholar

Aldinucci D, Casagrande N. Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer. Int J Mol Sci 2018; 19: 1477. doi: 10.3390/ ijms19051477AldinucciDCasagrandeNInhibition of the CCL5/CCR5 axis against the progression of gastric cancerInt J Mol Sci201819147710.3390/ijms19051477Open DOISearch in Google Scholar

Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Sem Cancer Biology 2006; 16: 38-52. doi: 10.1016/j.semcancer.2005.07.006Ben-BaruchA.Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediatorsSem Cancer Biology200616385210.1016/j.semcancer.2005.07.006Open DOISearch in Google Scholar

Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990; 347: 669-71. doi: 10.1038/347669a0SchallTJBaconKToyKJGoeddelDVSelective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTESNature19903476697110.1038/347669a0Open DOISearch in Google Scholar

Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 2008; 267: 271-85. doi: 10.1016/j.canlet.2008.03.018SoriaGBen-BaruchAThe inflammatory chemokines CCL2 and CCL5 in breast cancerCancer Lett20082672718510.1016/j.canlet.2008.03.018Open DOISearch in Google Scholar

Cocchi F, Tresoldi E, Björndal A, Fredriksson R, Colognesi C, Deng HK, et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+T cells. Science 1995; 270: 1811-5. doi: 10.1126/science.270.5243.1811CocchiFTresoldiEBjörndalAFredrikssonRColognesiCDengHKet alIdentification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+T cellsScience19952701811510.1126/science.270.5243.1811Open DOISearch in Google Scholar

Alkhatib G. The biology of CCR5 and CXCR4. Curr Opin HIV AIDS 2009; 4: 96-103. doi: 10.1097/COH.0b013e328324bbecAlkhatibGThe biology of CCR5 and CXCR4Curr Opin HIV AIDS200949610310.1097/COH.0b013e328324bbecOpen DOISearch in Google Scholar

Roscic-Mrkic B, Fischer M, Leemann C, Manrique A, Gordon CJ, Moore JP, et al. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 2003; 102: 1169-77. doi: 10.1182/blood-2003-02-0488Roscic-MrkicBFischerMLeemannCManriqueAGordonCJMooreJPet alRANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancementBlood200310211697710.1182/blood-2003-02-0488Open DOISearch in Google Scholar

Liu B, Hassan Z, Amisten S, King AJ, Bowe JE, Huang GC, et al. The novel chemokine receptor, G-protein-coupled receptor 75, is expressed by islets and is coupled to stimulation of insulin secretion and improved glucose homeostasis. Diabetologia 2013; 56: 2467-76. doi: 10.1007/s00125-013-3022-xLiuBHassanZAmistenSKingAJBoweJEHuangGCet alThe novel chemokine receptor, G-protein-coupled receptor 75, is expressed by islets and is coupled to stimulation of insulin secretion and improved glucose homeostasisDiabetologia20135624677610.1007/s00125-013-3022-xOpen DOISearch in Google Scholar

Velasco-Velazquez M, Xolalpa W, Pestell RG. The potential to target CCL5/CCR5 in breast cancer. Expert Opin Ther Targets 2014; 18: 1-11. doi: 10.1517/14728222.2014.949238Velasco-VelazquezMXolalpaWPestellRGThe potential to target CCL5/CCR5 in breast cancerExpert Opin Ther Targets20141811110.1517/14728222.2014.949238Open DOISearch in Google Scholar

Pan Y, Smithson LJ, Ma Y, Hambardzumyan D, Gutmann DH. Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival. Oncotarget 2017; 8: 32977-89. doi: 10.18632/ oncotarget.16516PanYSmithsonLJMaYHambardzumyanDGutmannDHCcl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survivalOncotarget20178329778910.18632/oncotarget.16516Open DOISearch in Google Scholar

Cambien B, Richard-Fiardo P, Karimdjee BF, Martini V, Ferrua B, Pitard B, et al. CCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinoma. PLoS One 2011; 6: e28842. doi: 10.1371/journal.pone.0028842CambienBRichard-FiardoPKarimdjeeBFMartiniVFerruaBPitardBet alCCL5 neutralization restricts cancer growth and potentiates the targeting of PDGFRβ in colorectal carcinomaPLoS One20116e2884210.1371/journal.pone.0028842Open DOISearch in Google Scholar

Huang CY, Fong YC, Lee CY, Chen MY, Tsai HC, Hsu HC, et al. CCL5 increases lung cancer migration via PI3K, Akt and NF-κB pathways. Biochem Pharmacol 2009; 77: 794-803. doi: 10.1016/j.bcp.2008.11.014HuangCYFongYCLeeCYChenMYTsaiHCHsuHCet alCCL5 increases lung cancer migration via PI3K, Akt and NF-κB pathwaysBiochem Pharmacol20097779480310.1016/j.bcp.2008.11.014Open DOISearch in Google Scholar

Vaday GG, Peehl DM, Kadam PA, Lawrence DM. Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 2006; 66: 124-34. doi: 10.1002/pros.20306VadayGGPeehlDMKadamPALawrenceDMExpression of CCL5 (RANTES) and CCR5 in prostate cancerProstate2006661243410.1002/pros.20306Open DOISearch in Google Scholar

Pervaiz A, Zepp M, Mahmood S, Ali DM, Berger MR, Adwan H. CCR5 blockage by maraviroc: a potential therapeutic option for metastatic breast cancer. Cellular Oncology 2018; 42: 93-106. doi: 10.1007/s13402-018-0415-3PervaizAZeppMMahmoodSAliDMBergerMRAdwanHCCR5 blockage by maraviroc: a potential therapeutic option for metastatic breast cancerCellular Oncology2018429310610.1007/s13402-018-0415-3Open DOISearch in Google Scholar

Jiao X, Velasco-Velázquez MA, Wang M, Li Z, Rui H, Peck AR, et al. CCR5 Governs DNA damage repair and breast cancer stem cell expansion. Cancer Res 2018; 78: 1657-71. doi: 10.1158/0008-5472.CAN-17-0915JiaoXVelasco-VelázquezMAWangMLiZRuiHPeckARet alCCR5 Governs DNA damage repair and breast cancer stem cell expansionCancer Res20187816577110.1158/0008-5472.CAN-17-0915Open DOISearch in Google Scholar

Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, Abe A. Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clin Cancer Res 2001; 7: 285-9. doi: 10.1158/1078-0432. ccr-06-0074NiwaYAkamatsuHNiwaHSumiHOzakiYAbeACorrelation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancerClin Cancer Res20017285910.1158/1078-0432.ccr-06-0074Open DOISearch in Google Scholar

Sugasawa H, Ichikura T, Kinoshita M, Ono S, Majima T, Tsujimoto H, et al. Gastric cancer cells exploit CD4+ cell-derived CCL5 for their growth and prevention of CD8+ cell-involved tumor elimination. Int J Cancer 2008; 122: 2535-41. doi: 10.1002/ijc.23401 doi:10.1002/ijc.23401SugasawaHIchikuraTKinoshitaMOnoSMajimaTTsujimotoHet alGastric cancer cells exploit CD4+ cell-derived CCL5 for their growth and prevention of CD8+ cell-involved tumor eliminationInt J Cancer200812225354110.1002/ijc.2340110.1002/ijc.23401Open DOISearch in Google Scholar

Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E, et al. The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clinical Cancer Res 2006; 12: 4474-80. doi: 10.1158/1078-0432.CCR-06-0074Yaal-HahoshenNShinaSLeider-TrejoLBarneaIShabtaiELAzenshteinEet alThe chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patientsClinical Cancer Res20061244748010.1158/1078-0432.CCR-06-0074Open DOISearch in Google Scholar

Sushil KS, Mishra MK. CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep 2018; 8: 1323. doi: 10.1038/ s41598-018-19643-0SushilKSMishraMKCCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cellsSci Rep20188132310.1038/s41598-018-19643-0Open DOISearch in Google Scholar

Pham K, Luo D, Liu C, Harrison JK. CCL5, CCR1 and CCR5 in murine glioblastoma: Immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5. J Neuroimmunol 2012; 246: 10-7. doi: 10.1016/j.jneuroim.2012.02.009PhamKLuoDLiuCHarrisonJKCCL5, CCR1 and CCR5 in murine glioblastoma: Immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5J Neuroimmunol201224610710.1016/j.jneuroim.2012.02.009Open DOISearch in Google Scholar

Borsig L, Wolf MJ, Roblek M, Lorentzen A, Heikenwalder M. Inflammatory chemokines and metastasis-tracing the accessory. Brit Dental J 2014; 33: 3217-24. doi: 10.1038/onc.2013.272BorsigLWolfMJRoblekMLorentzenAHeikenwalderMInflammatory chemokines and metastasis-tracing the accessoryBrit Dental J20143332172410.1038/onc.2013.272Open DOISearch in Google Scholar

Oppermann M. Chemokine receptor CCR5: Insights into structure, function, and regulation. Cellular Signalling 2004; 16: 1201-10. doi: 10.1016/j. cellsig.2004.04.007OppermannMChemokine receptor CCR5: Insights into structure, function, and regulationCellular Signalling20041612011010.1016/j.cellsig.2004.04.007Open DOISearch in Google Scholar

Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature 2009; 459: 356-63. doi: 10.1038/ nature08144RosenbaumDMRasmussenSGFKobilkaBKThe structure and function of G-protein-coupled receptorsNature20094593566310.1038/nature08144Open DOISearch in Google Scholar

Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol 2014; 32: 659-702. doi: 10.1146/annurev-immunol-032713-120145GriffithJWSokolCLLusterADChemokines and chemokine receptors: Positioning cells for host defense and immunityAnnu Rev Immunol20143265970210.1146/annurev-immunol-032713-120145Open DOISearch in Google Scholar

Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs 2019; 11: 219-38. doi: 10.1080/19420862.2018.1556465KaplonHReichertJMAntibodies to watch in 2019MAbs2019112193810.1080/19420862.2018.1556465Open DOISearch in Google Scholar

Dhody K, Pourhassan N, Kazempour K, Green D, Badri S, Mekonnen H, et al. PRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infection. HIV Clin Trials 2018; 19: 85-93. doi: 10.1080/15284336.2018.1452842DhodyKPourhassanNKazempourKGreenDBadriSMekonnenHet alPRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infectionHIV Clin Trials201819859310.1080/15284336.2018.1452842Open DOISearch in Google Scholar

Jiao X, Nawab O, Patel T, Kossenkov AV, Halama N, Jaeger D, et al. Recent advances targeting CCR5 for cancer and its role in immuno-oncology. Cancer Res Cancers 2019; 179: 4801-7. doi: 10.1158/0008-5472.CAN-19-1167JiaoXNawabOPatelTKossenkovAVHalamaNJaegerDet alRecent advances targeting CCR5 for cancer and its role in immuno-oncologyCancer Res Cancers20191794801710.1158/0008-5472.CAN-19-1167Open DOISearch in Google Scholar

Kouno J, Nagai H, Nagahata T, Onda M, Yamaguchi H, Adachi K, et al. Up-regulation of CC chemokine, CCL3L1, and receptors, CCR3, CCR5 in human glioblastoma that promotes cell growth. J Neurooncol 2004; 70: 301-7. doi: 10.1007/s11060-004-9165-3KounoJNagaiHNagahataTOndaMYamaguchiHAdachiKet alUp-regulation of CC chemokine, CCL3L1, and receptors, CCR3, CCR5 in human glioblastoma that promotes cell growthJ Neurooncol200470301710.1007/s11060-004-9165-3Open DOISearch in Google Scholar

Laudati E, Currò D, Navarra P, Lisi L. Blockade of CCR5 receptor prevents M2 microglia phenotype in a microglia-glioma paradigm. Neurochem Int 2017; 108: 100-8. doi: 10.1016/j.neuint.2017.03.002LaudatiECurròDNavarraPLisiLBlockade of CCR5 receptor prevents M2 microglia phenotype in a microglia-glioma paradigmNeurochem Int2017108100810.1016/j.neuint.2017.03.002Open DOISearch in Google Scholar

Velasco-Velazquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 2012; 72: 3839-50. doi: 10.1158/0008-5472.CAN-11-3917Velasco-VelazquezMJiaoXDe LaFuente MPestellTGErtelALisantiMPet alCCR5 antagonist blocks metastasis of basal breast cancer cellsCancer Res20127238395010.1158/0008-5472.CAN-11-3917Open DOISearch in Google Scholar

Peng WT, Sun WY, Li XR, Sun JC, Du JJ, Wei W. Emerging roles of G protein-coupled receptors in hepatocellular carcinoma. Int J Mol Sci 2018; 19: pii: E1366. doi: 10.3390/ijms19051366PengWTSunWYLiXRSunJCDuJJWeiWEmerging roles of G protein-coupled receptors in hepatocellular carcinomaInt J Mol Sci201819pii: E136610.3390/ijms19051366Open DOISearch in Google Scholar

Murooka TT, Rahbar R, Platanias LC, Fish EN. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BPl. Blood 2008; 111: 4892-901. doi: 10.1182/blood-2007-11-125039MurookaTTRahbarRPlataniasLCFishENCCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BPlBlood2008111489290110.1182/blood-2007-11-125039Open DOISearch in Google Scholar

Kahn J, Hayman TJ, Jamal M, Rath BH, Kramp T, Camphausen K, et al. The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro Oncol 2014; 16: 29-37. doi: 10.1093/neuonc/not139KahnJHaymanTJJamalMRathBHKrampTCamphausenKet alThe mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cellsNeuro Oncol201416293710.1093/neuonc/not139Open DOISearch in Google Scholar

Mecca C, Giambanco I, Bruscoli S, Bereshchenko O, Fioretti B, Riccardi C, et al. PP242 counteracts glioblastoma cell proliferation, migration, invasiveness and stemness properties by inhibiting mTORC2/AKT. Front Cell Neurosci 2018; 10: 12:99. doi: 10.3389/fncel.2018.00099MeccaCGiambancoIBruscoliSBereshchenkoOFiorettiBRiccardiCet alPP242 counteracts glioblastoma cell proliferation, migration, invasiveness and stemness properties by inhibiting mTORC2/AKTFront Cell Neurosci2018129910.3389/fncel.2018.00099Open DOISearch in Google Scholar

Mecca C, Giambanco I, Donato R, Arcuri C. Targeting mTOR in glioblastoma: rationale and preclinical/clinical evidence. Dis Markers 2018; 18: 1-10. doi: 10.1155/2018/9230479MeccaCGiambancoIDonatoRArcuriCTargeting mTOR in glioblastoma: rationale and preclinical/clinical evidenceDis Markers20181811010.1155/2018/9230479Open DOISearch in Google Scholar

Murooka TT, Rahbar R, Fish EN. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation. Biochem Biophys Res Commun 2009; 387: 381-6. doi: 10.1016/j.bbrc.2009.07.035MurookaTTRahbarRFishENCCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translationBiochem Biophys Res Commun2009387381610.1016/j.bbrc.2009.07.035Open DOISearch in Google Scholar

Zhao L, Wang Y, Xue Y, Lv W, Zhang Y, He S. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion. Acta Biochim Biophys Sin 2015; 47: 890-8. doi: 10.1093/abbs/gmv095ZhaoLWangYXueYLvWZhangYHeSCritical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasionActa Biochim Biophys Sin201547890810.1093/abbs/gmv095Open DOISearch in Google Scholar

Wolf K, Friedl P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 2011; 21: 746-8. doi: 10.1016/j. tcb.2011.09.006WolfKFriedlPExtracellular matrix determinants of proteolytic and non-proteolytic cell migrationTrends Cell Biol201121746810.1016/j.tcb.2011.09.006Open DOISearch in Google Scholar

Friedl P, Wolf K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362-74. doi: 10.1038/nrc1075FriedlPWolfKTumour-cell invasion and migration: Diversity and escape mechanismsNat Rev Cancer200333627410.1038/nrc1075Open DOISearch in Google Scholar

Lah TT, Duran Alonso MB, Van Noorden CJF. Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther 2006; 6: 257-79. doi: 10.1517/14712598.6.3.257LahTTDuran AlonsoMBVan NoordenCJFAntiprotease therapy in cancer: hot or not?Expert Opin Biol Ther200662577910.1517/14712598.6.3.257Open DOISearch in Google Scholar

Bouzahzah B, Albanese C, Ahmed F, Pixley F, Lisanti MP, Segall JD, et al. Rho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathways. Mol Med 2001; 7: 816-30.BouzahzahBAlbaneseCAhmedFPixleyFLisantiMPSegallJDet alRho family GTPases regulate mammary epithelium cell growth and metastasis through distinguishable pathwaysMol Med200178163010.1007/BF03401974Search in Google Scholar

Sicoli D, Jiao X, Ju X, Velasco-Velazquez M, Ertel A, Addya S, et al. CCR5 receptor antagonists block metastasis to bone of v-Src oncogene-transformed metastatic prostate cancer cell lines. Cancer Res 2014; 74: 7103-14. doi: 10.1158/0008-5472.CAN-14-0612SicoliDJiaoXJuXVelasco-VelazquezMErtelAAddyaSet alCCR5 receptor antagonists block metastasis to bone of v-Src oncogene-transformed metastatic prostate cancer cell linesCancer Res20147471031410.1158/0008-5472.CAN-14-0612Open DOISearch in Google Scholar

Gole B, Huszthy PC, Popović M, Jeruc J, Ardebili YS, Bjerkvig R, et al. The regulation of cysteine cathepsins and cystatins in human gliomas. Int J Cancer 2012; 131: 1779-89. doi: 10.1002/ijc.27453GoleBHuszthyPCPopovićMJerucJArdebiliYSBjerkvigRet alThe regulation of cysteine cathepsins and cystatins in human gliomasInt J Cancer201213117798910.1002/ijc.27453Open DOISearch in Google Scholar

Colin C, Voutsinos-Porche B, Nanni I, Fina F, Metellus P, Intagliata D, et al. High expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomas. Acta Neuropathol 2009; 118: 745-54. doi: 10.1007/s00401-009-0592-2ColinCVoutsinos-PorcheBNanniIFinaFMetellusPIntagliataDet alHigh expression of cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of survival in glioblastomasActa Neuropathol20091187455410.1007/s00401-009-0592-2Open DOISearch in Google Scholar

Wang Y, Liu T, Yang N Xu S, Li X, Wang D, et al. Hypoxia and macrophages, promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep 2016; 36: 3522-8. doi: 10.3892/or.2016.5171WangYLiuTYangN Xu SLiXWangDet alHypoxia and macrophages, promote glioblastoma invasion by the CCL4-CCR5 axisOncol Rep2016363522810.3892/or.2016.5171Open DOISearch in Google Scholar

Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 2017; 18: 234. doi: 10.1186/s13059-017-1362-4MüllerSKohanbashGLiuSJAlvaradoBCarreraDBhaduriAet alSingle-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironmentGenome Biol20171823410.1186/s13059-017-1362-4Open DOISearch in Google Scholar

Matias D, Balça-Silva J, da Graça GC, Wanjiru CM, Macharia LW, Nascimento CP, et al. Microglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front Cell Neurosci 2018; 12: 235. doi: 10.3389/fncel.2018.00235MatiasDBalça-SilvaJda GraçaGCWanjiruCMMachariaLWNascimentoCPet alMicroglia/astrocytes-glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factorsFront Cell Neurosci20181223510.3389/fncel.2018.00235Open DOISearch in Google Scholar

Morisse MC, Jouannet S, Dominguez-Villar M, Sanson M, Idbaih A. Interactions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapies. Expert Rev Neurother 2018; 18: 729-37. doi: 10.1080/14737175.2018.1510321MorisseMCJouannetSDominguez-VillarMSansonMIdbaihAInteractions between tumor-associated macrophages and tumor cells in glioblastoma: unraveling promising targeted therapiesExpert Rev Neurother2018187293710.1080/14737175.2018.1510321Open DOISearch in Google Scholar

Ransohoff RM. A polarizing question: Do M1 and M2 microglia exist. Nature Neuroscience 2016; 19: 987-91. doi: 10.1038/nn.4338RansohoffRMA polarizing question: Do M1 and M2 microglia existNature Neuroscience2016199879110.1038/nn.4338Open DOISearch in Google Scholar

Ban Y, Mai J, Li X, Mitchell-Flack M, Zhang T, Zhang, L, et al. Targeting autocrine CCL5-CCR5 axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res 2017; 77: 2857-68. doi: 10.1158/0008-5472.CAN-16-2913BanYMaiJLiXMitchell-FlackMZhangTZhangLet alTargeting autocrine CCL5-CCR5 axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunityCancer Res20177728576810.1158/0008-5472.CAN-16-2913Open DOISearch in Google Scholar

Hira VVV, Aderetti DA, van Noorden CJF. Glioma stem cell nichesn in human glioblastoma are periarteriolar. J Histochem Cytochem 2018; 66: 349-58. doi: 10.1369/0022155417752676HiraVVVAderettiDAvan NoordenCJFGlioma stem cell nichesn in human glioblastoma are periarteriolarJ Histochem Cytochem2018663495810.1369/0022155417752676Open DOISearch in Google Scholar

Solga AC, Pong WW, Kim KY, Cimino PJ, Toonen JA, Walker J, et al. RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia 2015; 17: 776-88. doi: 10.1016/j.neo.2015.10.002SolgaACPongWWKimKYCiminoPJToonenJAWalkerJet alRNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growthNeoplasia2015177768810.1016/j.neo.2015.10.002Open DOISearch in Google Scholar

Chakraborty R, Rooney C, Dotti G, Savoldo B. Changes in chemokine receptor expression of regulatory T cells after ex vivo culture. J Immunother 2012; 35: 329-36. doi: 10.1097/CJI.0b013e318255adccChakrabortyRRooneyCDottiGSavoldoBChanges in chemokine receptor expression of regulatory T cells after ex vivo cultureJ Immunother2012353293610.1097/CJI.0b013e318255adccOpen DOISearch in Google Scholar

Wang SW, Liu SC, Sun HL, Huang TY. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment. Carcinogenesis 2014; 36: 104-14. doi: 10.1093/carcin/bgu218WangSWLiuSCSunHLHuangTYCCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironmentCarcinogenesis2014361041410.1093/carcin/bgu218Open DOISearch in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology