Open Access

The use of high-frequency short bipolar pulses in cisplatin electrochemotherapy in vitro


Cite

Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M. Cell membrane electroporation-part 1: the phenomenon. IEEE Electr Insul Mag 2012; 28: 14-23. 10.1109/MEI.2012.6268438KotnikTKramarPPuciharGMiklavcicDTarekMCell membrane electroporation-part 1: the phenomenonIEEE Electr Insul Mag201228142310.1109/MEI.2012.626843810.1109/MEI.2012.6268438Search in Google Scholar

Weaver JC. Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 1993; 51: 426-35. 10.1002/jcb.2400510407WeaverJCElectroporation: a general phenomenon for manipulating cells and tissuesJ Cell Biochem1993514263510.1002/jcb.240051040710.1002/jcb.24005104078496245Search in Google Scholar

Tsong TY. Electroporation of cell membranes. Biophys J 1991; 60: 297-306. 10.1016/S0006-3495(91)82054-9TsongTYElectroporation of cell membranesBiophys J19916029730610.1016/S0006-3495(91)82054-910.1007/978-1-4899-2528-2_9Search in Google Scholar

Kotnik T, Rems L, Tarek M, Miklavčič D. Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys 2019; 48. 10.1146/annurev-biophys-052118-115451KotnikTRemsLTarekMMiklavčičDMembrane electroporation and electropermeabilization: mechanisms and modelsAnnu Rev Biophys20194810.1146/annurev-biophys-052118-11545110.1146/annurev-biophys-052118-11545130786231Search in Google Scholar

Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 2014; 16: 295-320. 10.1146/annurev-bio-eng-071813-104622YarmushMLGolbergASeršaGKotnikTMiklavčičDElectroporation-based technologies for medicine: principles, applications, and challengesAnnu Rev Biomed Eng20141629532010.1146/annurev-bio-eng-071813-10462210.1146/annurev-bioeng-071813-10462224905876Search in Google Scholar

Jiang C, Davalos RV, Bischof JC. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 2015; 62: 4-20. 10.1109/TBME.2014.2367543JiangCDavalosRVBischofJCA review of basic to clinical studies of irreversible electroporation therapyIEEE Trans Biomed Eng20156242010.1109/TBME.2014.236754310.1109/TBME.2014.236754325389236Search in Google Scholar

Scheffer HJ, Nielsen K, de Jong MC, van Tilborg AA, Vieveen JM, Bouwman AR, et al. Irreversible electroporation for nonthermal tumor Ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 2014; 25: 997-1011. 10.1016/j.jvir.2014.01.028SchefferHJNielsenKde JongMCvan TilborgAAVieveenJMBouwmanARIrreversible electroporation for nonthermal tumor Ablation in the clinical setting: a systematic review of safety and efficacyJ Vasc Interv Radiol201425997101110.1016/j.jvir.2014.01.02810.1016/j.jvir.2014.01.02824656178Search in Google Scholar

Mali B, Jarm T, Snoj M, Serša G, Miklavčič D. Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 2013; 39: 4-16. 10.1016/j.ejso.2012.08.016MaliBJarmTSnojMSeršaGMiklavčičDAntitumor effectiveness of electrochemotherapy: a systematic review and meta-analysisEur J Surg Oncol20133941610.1016/j.ejso.2012.08.01610.1016/j.ejso.2012.08.01622980492Search in Google Scholar

Haberl S, Miklavčič D, Serša G, Frey W, Rubinsky B. Cell membrane electroporation – part 2: the applications. Electr Insul Mag IEEE 2013; 29: 29-37. 10.1109/MEI.2013.6410537HaberlSMiklavčičDSeršaGFreyWRubinskyBCell membrane electroporation – part 2: the applicationsElectr Insul Mag IEEE201329293710.1109/MEI.2013.641053710.1109/MEI.2013.6410537Search in Google Scholar

Cadossi R, Ronchetti M, Cadossi M. Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol 2014; 10: 877-90. 10.2217/fon.13.235CadossiRRonchettiMCadossiMLocally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapyFuture Oncol2014108779010.2217/fon.13.23510.2217/fon.13.23524799067Search in Google Scholar

Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D. Electroporationbased applications in biotechnology. Trends Biotechnol 2015; 33: 480-8. 10.1016/j.tibtech.2015.06.002KotnikTFreyWSackMMegličSHPeterkaMMiklavčičDElectroporationbased applications in biotechnologyTrends Biotechnol201533480810.1016/j.tibtech.2015.06.00210.1016/j.tibtech.2015.06.002Search in Google Scholar

Golberg A, Sack M, Teissie J, Pataro G, Pliquett U, Saulis G, et al. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol Biofuels 2016; 9: 94. 10.1186/s13068-016-0508-zGolbergASackMTeissieJPataroGPliquettUSaulisGEnergy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable developmentBiotechnol Biofuels201699410.1186/s13068-016-0508-z10.1186/s13068-016-0508-zSearch in Google Scholar

Toepfl S, Siemer C, Saldaña-Navarro G, Heinz V. Overview of pulsed electric fields processing for food. In: Sun DW, editor. Emerging technologies for food processing Second edition. Amsterdam: Academic press; Elsevier; 2014. p. 93-114. 10.1016/B978-0-12-411479-1.00006-1ToepflSSiemerCSaldaña-NavarroGHeinzVOverview of pulsed electric fields processing for foodSunDWEmerging technologies for food processingSecond editionAmsterdamAcademic press; Elsevier20149311410.1016/B978-0-12-411479-1.00006-110.1016/B978-0-12-411479-1.00006-1Search in Google Scholar

Mahnič-Kalamiza S, Vorobiev E, Miklavčič D. Electroporation in food processing and biorefinery. J Membr Biol 2014; 247: 1279-304. 10.1007/s00232-014-9737-xMahnič-KalamizaSVorobievEMiklavčičDElectroporation in food processing and biorefineryJ Membr Biol2014247127930410.1007/s00232-014-9737-x10.1007/s00232-014-9737-xSearch in Google Scholar

Campana LG, Edhemović I, Soden D, Perrone AM, Scarpa M, Campanacci L, et al. Electrochemotherapy - emerging applications technical advances, new indications, combined approaches, and multi-institutional collaboration. Eur J Surg Oncol 2019; 45: 92-102. 10.1016/j.ejso.2018.11.023CampanaLGEdhemovićISodenDPerroneAMScarpaMCampanacciLElectrochemotherapy - emerging applications technical advances, new indications, combined approaches, and multi-institutional collaborationEur J Surg Oncol2019459210210.1016/j.ejso.2018.11.02310.1016/j.ejso.2018.11.023Search in Google Scholar

Miklavčič D, Mali B, Kos B, Heller R, Serša G. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng OnLine 2014; 13: 29. 10.1186/1475-925X-13-29MiklavčičDMaliBKosBHellerRSeršaGElectrochemotherapy: from the drawing board into medical practiceBiomed Eng OnLine2014132910.1186/1475-925X-13-2910.1186/1475-925X-13-29Search in Google Scholar

Mir LM, Gehl J, Serša G, Collins CG, Garbay J-R, Billard V, et al. Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. Eur J Cancer Suppl 2006; 4: 14-25. 10.1016/j.ejcsup.2006.08.003MirLMGehlJSeršaGCollinsCGGarbayJ-RBillardVStandard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodesEur J Cancer Suppl20064142510.1016/j.ejcsup.2006.08.00310.1016/j.ejcsup.2006.08.003Search in Google Scholar

Gehl J, Serša G, Matthiessen LW, Muir T, Soden D, Occhini A, et al. Updated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastases. Acta Oncol Stockh Swed 2018; 57: 874-82. 10.1080/0284186X.2018.1454602GehlJSeršaGMatthiessenLWMuirTSodenDOcchiniAUpdated standard operating procedures for electrochemotherapy of cutaneous tumours and skin metastasesActa Oncol Stockh Swed2018578748210.1080/0284186X.2018.145460210.1080/0284186X.2018.1454602Search in Google Scholar

Marty M, Serša G, Garbay JR, Gehl J, Collins CG, Snoj M, et al. Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 2006; 4: 3-13. 10.1016/j.ejcsup.2006.08.002MartyMSeršaGGarbayJRGehlJCollinsCGSnojMElectrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) studyEur J Cancer Suppl2006431310.1016/j.ejcsup.2006.08.00210.1016/j.ejcsup.2006.08.002Search in Google Scholar

Mir LM, Tounekti O, Orlowski S. Bleomycin: revival of an old drug. Gen Pharmacol 1996; 27: 745-8. 10.1016/0306-3623(95)02101-9MirLMTounektiOOrlowskiSBleomycin: revival of an old drugGen Pharmacol199627745810.1016/0306-3623(95)02101-910.1016/0306-3623(95)02101-9Search in Google Scholar

Tounekti O, Pron G, Belehradek J, Mir LM. Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 1993; 53: 5462-9. PMID: 7693342TounektiOPronGBelehradekJMirLMBleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalizedCancer Res19935354629PMID: 7693342Search in Google Scholar

Spreckelmeyer S, Orvig C, Casini A. Cellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatin. Molecules 2014; 19: 15584-610. 10.3390/molecules191015584SpreckelmeyerSOrvigCCasiniACellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatinMolecules2014191558461010.3390/molecules19101558410.3390/molecules191015584627155025268716Search in Google Scholar

Serša G, Čemažar M, Miklavčič D. Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res 1995; 55: 3450-5. PMID: 7614485SeršaGČemažarMMiklavčičDAntitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in miceCancer Res19955534505PMID: 7614485Search in Google Scholar

Tozon N, Serša G, Čemažar M. Electrochemotherapy: potentiation of local antitumour effectiveness of cisplatin in dogs and cats. Anticancer Res 2001; 21: 2483-8. PMID: 11724311TozonNSeršaGČemažarMElectrochemotherapy: potentiation of local antitumour effectiveness of cisplatin in dogs and catsAnticancer Res20012124838PMID: 11724311Search in Google Scholar

Jaroszeski MJ, Dang V, Pottinger C, Hickey J, Gilbert R, Heller R. Toxicity of anticancer agents mediated by electroporation in vitro. Anticancer Drugs 2000; 11: 201-8. PMID: 10831279JaroszeskiMJDangVPottingerCHickeyJGilbertRHellerRToxicity of anticancer agents mediated by electroporation in vitroAnticancer Drugs2000112018PMID: 1083127910.1097/00001813-200003000-0000810831279Search in Google Scholar

Županič A, Ribarič S, Miklavčič D. Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma 2007; 54: 246-50. PMID: 17447858ŽupaničARibaričSMiklavčičDIncreasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapyNeoplasma20075424650PMID: 17447858Search in Google Scholar

Miklavčič D, Pucihar G, Pavlovec M, Ribarič S, Mali M, Maček-Lebar A, et al. The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 2005; 65: 121-8. 10.1016/j.bioelechem.2004.07.004MiklavčičDPuciharGPavlovecMRibaričSMaliMMaček-LebarAThe effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapyBioelectrochemistry200565121810.1016/j.bioelechem.2004.07.00410.1016/j.bioelechem.2004.07.00415713562Search in Google Scholar

Arena CB, Davalos RV. Advances in therapeutic electroporation to mitigate muscle contractions. J Membr Sci Technol 2012; 2: 1-3. 10.4172/2155-9589.1000e102ArenaCBDavalosRVAdvances in therapeutic electroporation to mitigate muscle contractionsJ Membr Sci Technol201221310.4172/2155-9589.1000e102Search in Google Scholar

Ball C, Thomson KR, Kavnoudias H. Irreversible electroporation: a new challenge in “Out of Operating Theater” anesthesia. Anesth Analg 2010; 110: 1305-9. 10.1213/ANE.0b013e3181d27b30BallCThomsonKRKavnoudiasHIrreversible electroporation: a new challenge in “Out of Operating Theater” anesthesiaAnesth Analg20101101305910.1213/ANE.0b013e3181d27b3010.1213/ANE.0b013e3181d27b3020142349Search in Google Scholar

Mali B, Jarm T, Čorović S, Paulin-Kosir MS, Čemažar M, Serša G, et al. The effect of electroporation pulses on functioning of the heart. Med Biol Eng Comput 2008; 46: 745-57. 10.1007/s11517-008-0346-7MaliBJarmTČorovićSPaulin-KosirMSČemažarMSeršaGThe effect of electroporation pulses on functioning of the heartMed Biol Eng Comput2008467455710.1007/s11517-008-0346-710.1007/s11517-008-0346-7249170318415132Search in Google Scholar

Deodhar A, Dickfeld T, Single GW, Hamilton WC, Thornton RH, Sofocleous CT, et al. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. AJR Am J Roentgenol 2011; 196: W330-5. 10.2214/AJR.10.4490DeodharADickfeldTSingleGWHamiltonWCThorntonRHSofocleousCTIrreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronizationAJR Am J Roentgenol2011196W330510.2214/AJR.10.449010.2214/AJR.10.4490450094121343484Search in Google Scholar

Golberg A, Rubinsky B. Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol Cancer Res Treat 2012; 11: 189-201. 10.7785/tcrt.2012.500249GolbergARubinskyBTowards electroporation based treatment planning considering electric field induced muscle contractionsTechnol Cancer Res Treat20121118920110.7785/tcrt.2012.50024910.7785/tcrt.2012.50024922335414Search in Google Scholar

Yao C, Dong S, Zhao Y, Lv Y, Liu H, Gong L, et al. Bipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporation. IEEE Trans Biomed Eng 2017; 64: 2924-37. 10.1109/TBME.2017.2690624YaoCDongSZhaoYLvYLiuHGongLBipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporationIEEE Trans Biomed Eng20176429243710.1109/TBME.2017.269062410.1109/TBME.2017.269062428391185Search in Google Scholar

Sano MB, Fan RE, Cheng K, Saenz Y, Sonn GA, Hwang GL, et al. Reduction of muscle contractions during irreversible electroporation therapy using high-frequency bursts of alternating polarity pulses: a laboratory investigation in an ex vivo swine model. J Vasc Interv Radiol JVIR 2018; 29: 893-8.e4. 10.1016/j.jvir.2017.12.019SanoMBFanREChengKSaenzYSonnGAHwangGLReduction of muscle contractions during irreversible electroporation therapy using high-frequency bursts of alternating polarity pulses: a laboratory investigation in an ex vivo swine modelJ Vasc Interv Radiol JVIR2018298938.e410.1016/j.jvir.2017.12.01910.1016/j.jvir.2017.12.01929628296Search in Google Scholar

Latouche EL, Arena CB, Ivey JW, Garcia PA, Pancotto TE, Pavlisko N, et al. High-frequency irreversible electroporation for intracranial meningioma: A feasibility study in a spontaneous canine tumor model. Technol Cancer Res Treat 2018; 17: 1-10. 10.1177/1533033818785285LatoucheELArenaCBIveyJWGarciaPAPancottoTEPavliskoNHigh-frequency irreversible electroporation for intracranial meningioma: A feasibility study in a spontaneous canine tumor modelTechnol Cancer Res Treat20181711010.1177/153303381878528510.1177/1533033818785285607789630071778Search in Google Scholar

Dong S, Wang H, Zhao Y, Sun Y, Yao C. First human trial of high-frequency irreversible electroporation therapy for prostate cancer. Technol Cancer Res Treat 2018; 17: 1-9. 10.1177/1533033818789692DongSWangHZhaoYSunYYaoCFirst human trial of high-frequency irreversible electroporation therapy for prostate cancerTechnol Cancer Res Treat2018171910.1177/153303381878969210.1177/1533033818789692607115930045668Search in Google Scholar

Arena CB, Sano MB, Rossmeisl JH, Caldwell JL, Garcia PA, Rylander M, et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng OnLine 2011; 10: 102. 10.1186/1475-925X-10-102ArenaCBSanoMBRossmeislJHCaldwellJLGarciaPARylanderMHigh-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contractionBiomed Eng OnLine20111010210.1186/1475-925X-10-10210.1186/1475-925X-10-102325829222104372Search in Google Scholar

Sweeney DC, Reberšek M, Dermol J, Rems L, Miklavčič D, Davalos RV. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses. Biochim Biophys Acta BBA - Biomembr 2016; 1858: 2689-98. 10.1016/j.bbamem.2016.06.024SweeneyDCReberšekMDermolJRemsLMiklavčičDDavalosRVQuantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulsesBiochim Biophys Acta BBA - Biomembr2016185826899810.1016/j.bbamem.2016.06.02410.1016/j.bbamem.2016.06.02427372268Search in Google Scholar

Pucihar G, Kotnik T, Teissié J, Miklavčič D. Electropermeabilization of dense cell suspensions. Eur Biophys J 2007; 36: 173-85. 10.1007/s00249-006-0115-1PuciharGKotnikTTeissiéJMiklavčičDElectropermeabilization of dense cell suspensionsEur Biophys J2007361738510.1007/s00249-006-0115-110.1007/s00249-006-0115-117294179Search in Google Scholar

Dermol J, Miklavčič D. Mathematical models describing chinese hamster ovary cell death due to electroporation in vitro. J Membr Biol 2015; 248: 865-81. 10.1007/s00232-015-9825-6DermolJMiklavčičDMathematical models describing chinese hamster ovary cell death due to electroporation in vitroJ Membr Biol20152488658110.1007/s00232-015-9825-610.1007/s00232-015-9825-626223863Search in Google Scholar

Dermol-Černe J, Miklavčič D, Reberšek M, Mekuč P, Bardet SM, Burke R, et al. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry 2018; 122:103-14. 10.1016/j.bioelechem.2018.03.011Dermol-ČerneJMiklavčičDReberšekMMekučPBardetSMBurkeRPlasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitabilityBioelectrochemistry20181221031410.1016/j.bioelechem.2018.03.01110.1016/j.bioelechem.2018.03.01129621662Search in Google Scholar

Jakštys B, Ruzgys P, Tamošiūnas M, Šatkauskas S. Different cell viability assays reveal inconsistent results after bleomycin electrotransfer in vitro. J Membr Biol 2015; 248: 857-63. 10.1007/s00232-015-9813-xJakštysBRuzgysPTamošiūnasMŠatkauskasSDifferent cell viability assays reveal inconsistent results after bleomycin electrotransfer in vitroJ Membr Biol20152488576310.1007/s00232-015-9813-x10.1007/s00232-015-9813-x26077843Search in Google Scholar

Serša G, Štabuc B, Čemažar M, Miklavčič D, Rudolf Z. Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clin Cancer Res 2000; 6: 863-7. PMID: 10741708SeršaGŠtabucBČemažarMMiklavčičDRudolfZElectrochemotherapy with cisplatin: clinical experience in malignant melanoma patientsClin Cancer Res200068637PMID: 10741708Search in Google Scholar

Čemažar M, Jarm T, Miklavčič D, Maček Lebar A, Ihan A, Kopitar NA, et al. Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro-Magnetobiology 1998; 17: 263-72. doi.org/10.3109/15368379809022571ČemažarMJarmTMiklavčičDMaček LebarAIhanAKopitarNAEffect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitroElectro-Magnetobiology19981726372doi.org/10.3109/1536837980902257110.3109/15368379809022571Search in Google Scholar

Dermol-Černe J, Vidmar J, Ščančar J, Uršič K, Serša G, Miklavčič D. Connecting the in vitro and in vivo experiments in electrochemotherapy - a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity model. J Control Release 2018; 286: 33-45. 10.1016/j.jconrel.2018.07.021Dermol-ČerneJVidmarJŠčančarJUršičKSeršaGMiklavčičDConnecting the in vitro and in vivo experiments in electrochemotherapy - a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity modelJ Control Release2018286334510.1016/j.jconrel.2018.07.02110.1016/j.jconrel.2018.07.02130016733Search in Google Scholar

Sano MB, Arena CB, Bittleman KR, DeWitt MR, Cho HJ, Szot CS, et al. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth. Sci Rep 2015; 5: 14999. 10.1038/srep14999SanoMBArenaCBBittlemanKRDeWittMRChoHJSzotCSBursts of Bipolar Microsecond Pulses Inhibit Tumor GrowthSci Rep201551499910.1038/srep1499910.1038/srep14999460231026459930Search in Google Scholar

Puc M, Kotnik T, Mir LM, Miklavčič D. Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry Amst Neth 2003; 60: 1-10. 10.1016/S1567-5394(03)00021-5PucMKotnikTMirLMMiklavčičDQuantitative model of small molecules uptake after in vitro cell electropermeabilizationBioelectrochemistry Amst Neth20036011010.1016/S1567-5394(03)00021-510.1016/S1567-5394(03)00021-5Search in Google Scholar

Gehl J, Skovsgaard T, Mir LM. Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs 1998; 9: 319-25. PMID: 9635922GehlJSkovsgaardTMirLMEnhancement of cytotoxicity by electropermeabilization: an improved method for screening drugsAnticancer Drugs1998931925PMID: 963592210.1097/00001813-199804000-000059635922Search in Google Scholar

Pucihar G, Kotnik T, Miklavčič D, Teissié J. Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 2008; 95: 2837-48. 10.1529/biophysj.108.135541PuciharGKotnikTMiklavčičDTeissiéJKinetics of transmembrane transport of small molecules into electropermeabilized cellsBiophys J20089528374810.1529/biophysj.108.13554110.1529/biophysj.108.135541252725318539632Search in Google Scholar

Čemažar M, Serša G, Miklavčič D. Electrochemotherapy with cisplatin in the treatment of tumor cells resistant to cisplatin. Anticancer Res 1998; 18: 463-6. PMID: 9891510ČemažarMSeršaGMiklavčičDElectrochemotherapy with cisplatin in the treatment of tumor cells resistant to cisplatinAnticancer Res1998184636PMID: 9891510Search in Google Scholar

Saczko J, Kamińska I, Kotulska M, Bar J, Choromańska A, Rembiałkowska N, et al. Combination of therapy with 5-fluorouracil and cisplatin with electroporation in human ovarian carcinoma model in vitro. Biomed Pharmacother 2014; 68: 573-80. 10.1016/j.biopha.2014.05.005SaczkoJKamińskaIKotulskaMBarJChoromańskaARembiałkowskaNCombination of therapy with 5-fluorouracil and cisplatin with electroporation in human ovarian carcinoma model in vitroBiomed Pharmacother2014685738010.1016/j.biopha.2014.05.00510.1016/j.biopha.2014.05.00524975085Search in Google Scholar

Žakelj M, Prevc A, Kranjc S, Čemažar M, Todorovič V, Savarin M, et al. Electrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenografts. Oncol Rep 2019; 41: 1658-68. 10.3892/or.2019.6960ŽakeljMPrevcAKranjcSČemažarMTodorovičVSavarinMElectrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenograftsOncol Rep20194116586810.3892/or.2019.696010.3892/or.2019.6960636570530628709Search in Google Scholar

Todorovič V, Serša G, Flisar K, Čemažar M. Enhanced cytotoxicity of bleomycin and cisplatin after electroporation in murine colorectal carcinoma cells. Radiol Oncol 2009; 43: 264-73. 10.2478/v10019-009-0037-5TodorovičVSeršaGFlisarKČemažarMEnhanced cytotoxicity of bleomycin and cisplatin after electroporation in murine colorectal carcinoma cellsRadiol Oncol2009432647310.2478/v10019-009-0037-510.2478/v10019-009-0037-5Search in Google Scholar

Vásquez JL, Ibsen P, Lindberg H, Gehl J. In vitro and in vivo experiments on electrochemotherapy for bladder cancer. J Urol 2015; 193: 1009-15. 10.1016/j.juro.2014.09.039VásquezJLIbsenPLindbergHGehlJIn vitro and in vivo experiments on electrochemotherapy for bladder cancerJ Urol201519310091510.1016/j.juro.2014.09.03910.1016/j.juro.2014.09.03925245485Search in Google Scholar

Kranjc M, Markelc B, Bajd F, Čemažar M, Serša I, Blagus T, et al. In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology 2015; 274: 115-23. 10.1148/radiol.14140311KranjcMMarkelcBBajdFČemažarMSeršaIBlagusTIn situ monitoring of electric field distribution in mouse tumor during electroporationRadiology20152741152310.1148/radiol.1414031110.1148/radiol.1414031125144647Search in Google Scholar

Čorović S, Pavlin M, Miklavčič D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng OnLine 2007; 6: 37. 10.1186/1475-925X-6-37ČorovićSPavlinMMiklavčičDAnalytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurationsBiomed Eng OnLine200763710.1186/1475-925X-6-3710.1186/1475-925X-6-37210005817937793Search in Google Scholar

Dong S, Yao C, Zhao Y, Lv Y, Liu H. Parameters optimization of bipolar high frequency pulses on tissue ablation and inhibiting muscle contraction. IEEE Trans Dielectr Electr Insul 2018; 25: 207-16. 10.1109/TDEI.2018.006303DongSYaoCZhaoYLvYLiuHParameters optimization of bipolar high frequency pulses on tissue ablation and inhibiting muscle contractionIEEE Trans Dielectr Electr Insul2018252071610.1109/TDEI.2018.00630310.1109/TDEI.2018.006303Search in Google Scholar

Zhao Y, Bhonsle S, Dong S, Lv Y, Liu H, Safaai-Jazi A, et al. Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning. IEEE Trans Biomed Eng 2018; 65: 1810-9. 10.1109/TBME.2017.2778101ZhaoYBhonsleSDongSLvYLiuHSafaai-JaziACharacterization of conductivity changes during high-frequency irreversible electroporation for treatment planningIEEE Trans Biomed Eng2018651810910.1109/TBME.2017.277810110.1109/TBME.2017.277810129989932Search in Google Scholar

Siddiqui IA, Latouche EL, DeWitt MR, Swet JH, Kirks RC, Baker EH, et al. Induction of rapid, reproducible hepatic ablations using next-generation, high frequency irreversible electroporation (H-FIRE) in vivo. HPB 2016; 18: 726-34. 10.1016/j.hpb.2016.06.015SiddiquiIALatoucheELDeWittMRSwetJHKirksRCBakerEHInduction of rapid, reproducible hepatic ablations using next-generation, high frequency irreversible electroporation (H-FIRE) in vivoHPB2016187263410.1016/j.hpb.2016.06.01510.1016/j.hpb.2016.06.015501110027593589Search in Google Scholar

Siddiqui IA, Kirks RC, Latouche EL, DeWitt MR, Swet JH, Baker EH, et al. High-frequency irreversible electroporation: Safety and efficacy of next-generation irreversible electroporation adjacent to critical hepatic structures. Surg Innov 2017; 24: 276-83. 10.1177/1553350617692202SiddiquiIAKirksRCLatoucheELDeWittMRSwetJHBakerEHHigh-frequency irreversible electroporation: Safety and efficacy of next-generation irreversible electroporation adjacent to critical hepatic structuresSurg Innov2017242768310.1177/155335061769220210.1177/155335061769220228492356Search in Google Scholar

Arena CB, Garcia PA, Sano MB, Olson JD, Rogers-Cotrone T, Rossmeisl JH, et al. Focal blood-brain-barrier disruption with high-frequency pulsed electric fields. Technology 2014; 2: 206-13. 10.1142/S2339547814500186ArenaCBGarciaPASanoMBOlsonJDRogers-CotroneTRossmeislJHFocal blood-brain-barrier disruption with high-frequency pulsed electric fieldsTechnology201422061310.1142/S233954781450018610.1142/S2339547814500186Search in Google Scholar

Rogers WR, Merritt JH, Comeaux JA, Kuhnel CT, Moreland DF, Teltschik DG, et al. Strength-duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans Plasma Sci 2004; 32: 1587-99. 10.1109/TPS.2004.831758RogersWRMerrittJHComeauxJAKuhnelCTMorelandDFTeltschikDGStrength-duration curve for an electrically excitable tissue extended down to near 1 nanosecondIEEE Trans Plasma Sci20043215879910.1109/TPS.2004.83175810.1109/TPS.2004.831758Search in Google Scholar

Mercadal B, Arena CB, Davalos RV, Ivorra A. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study. Phys Med Biol 2017; 62: 8060-79. 10.1088/1361-6560/aa8c53MercadalBArenaCBDavalosRVIvorraAAvoiding nerve stimulation in irreversible electroporation: a numerical modeling studyPhys Med Biol20176280607910.1088/1361-6560/aa8c5310.1088/1361-6560/aa8c53574467528901954Search in Google Scholar

van den Honert C, Mortimer JT. The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng 1979; 7: 117-25. 10.1007/BF02363130van den HonertCMortimerJTThe response of the myelinated nerve fiber to short duration biphasic stimulating currentsAnn Biomed Eng197971172510.1007/BF0236313010.1007/BF02363130533020Search in Google Scholar

Sano MB, Fan RE, Xing L. Asymmetric waveforms decrease lethal thresholds in high frequency irreversible electroporation therapies. Sci Rep 2017; 7: 40747. 10.1038/srep40747SanoMBFanREXingLAsymmetric waveforms decrease lethal thresholds in high frequency irreversible electroporation therapiesSci Rep201774074710.1038/srep4074710.1038/srep40747524777328106146Search in Google Scholar

Valdez CM, Barnes R, Roth CC, Moen E, Ibey B. The interphase interval within a bipolar nanosecond electric pulse modulates bipolar cancellation. Bioelectromagnetics 2018; 39: 441-50. 10.1002/bem.22134ValdezCMBarnesRRothCCMoenEIbeyBThe interphase interval within a bipolar nanosecond electric pulse modulates bipolar cancellationBioelectromagnetics2018394415010.1002/bem.2213410.1002/bem.2213429984850Search in Google Scholar

Bhonsle SP, Arena CB, Sweeney DC, Davalos RV. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses. Biomed Eng Online 2015; 14(Suppl 3): S3. 10.1186/1475-925X-14-S3-S3BhonsleSPArenaCBSweeneyDCDavalosRVMitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulsesBiomed Eng Online201514Suppl 3S310.1186/1475-925X-14-S3-S310.1186/1475-925X-14-S3-S3456514926355870Search in Google Scholar

Kotnik T, Miklavčič D, Mir LM. Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination. Bioelectrochemistry 2001; 54: 91-5. 10.1016/S1567-5394(01)00115-3KotnikTMiklavčičDMirLMCell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contaminationBioelectrochemistry20015491510.1016/S1567-5394(01)00115-310.1016/S1567-5394(01)00115-3Search in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology