Open Access

Increased cystatin F levels correlate with decreased cytotoxicity of cytotoxic T cells


Cite

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74. doi: 10.1016/j.cell.2011.02.013 Hanahan D Weinberg RA Hallmarks of cancer: the next generation Cell 2011 144 64674 10.1016/j.cell.2011.02.013Open DOISearch in Google Scholar

Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol 2018; 9: 14. doi: 10.3389/fimmu.2018.00014 Durgeau A Virk Y Corgnac S Mami-Chouaib F Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy Front Immunol 2018 9 14 10.3389/fimmu.2018.00014Open DOISearch in Google Scholar

Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2: 735-47. doi: 10.1038/nri911 Trapani JA Smyth MJ Functional significance of the perforin/granzyme cell death pathway Nat Rev Immunol 2002 2 73547 10.1038/nri911Open DOISearch in Google Scholar

Voskoboinik I, Trapani JA. Perforinopathy: a spectrum of human immune disease caused by defective perforin delivery or function. Front Immunol 2013; 4: 441. doi: 10.3389/fimmu.2013.00441 Voskoboinik I Trapani JA Perforinopathy: a spectrum of human immune disease caused by defective perforin delivery or function Front Immunol 2013 4 441 10.3389/fimmu.2013.00441Open DOISearch in Google Scholar

Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 2015; 15: 388-400. doi: 10.1038/nri3839 Voskoboinik I Whisstock JC Trapani JA Perforin and granzymes: function, dysfunction and human pathology Nat Rev Immunol 2015 15 388400 10.1038/nri3839Open DOISearch in Google Scholar

Sutton VR, Waterhouse NJ, Browne KA, Sedelies K, Ciccone A, Anthony D, et al. Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. J Cell Biol 2007; 176: 425-33. doi: 10.1083/jcb.200609077 Sutton VR Waterhouse NJ Browne KA Sedelies K Ciccone A Anthony D Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis J Cell Biol 2007 176 42533 10.1083/jcb.200609077Open DOISearch in Google Scholar

D’Angelo ME, Bird PI, Peters C, Reinheckel T, Trapani JA, Sutton VR. Cathepsin H is an additional convertase of pro-granzyme B. J Biol Chem 2010; 285: 20514-9. doi: 10.1074/jbc.M109.094573 D’Angelo ME Bird PI Peters C Reinheckel T Trapani JA Sutton VR Cathepsin H is an additional convertase of pro-granzyme B J Biol Chem 2010 285 205149 10.1074/jbc.M109.094573Open DOISearch in Google Scholar

House IG, House CM, Brennan AJ, Gilan O, Dawson MA, Whisstock JC, et al. Regulation of perforin activation and pre-synaptic toxicity through C-terminal glycosylation. EMBO Rep 2017; 18: 1775-85. doi: 10.15252/embr.201744351 House IG House CM Brennan AJ Gilan O Dawson MA Whisstock JC Regulation of perforin activation and pre-synaptic toxicity through C-terminal glycosylation EMBO Rep 2017 18 177585 10.15252/embr.201744351Open DOISearch in Google Scholar

Uellner R, Zvelebil MJ, Hopkins J, Jones J, MacDougall LK, Morgan BP, et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J 1997; 16: 7287-96. doi: 10.1093/emboj/16.24.7287 Uellner R Zvelebil MJ Hopkins J Jones J MacDougall LK Morgan BP Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain EMBO J 1997 16 728796 10.1093/emboj/16.24.7287Open DOISearch in Google Scholar

Konjar S, Sutton VR, Hoves S, Repnik U, Yagita H, Reinheckel T, et al. Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology 2010; 131: 257-67. doi: 10.1111/j.1365-2567.2010.03299.x Konjar S Sutton VR Hoves S Repnik U Yagita H Reinheckel T Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L Immunology 2010 131 25767 10.1111/j.1365-2567.2010.03299.xOpen DOISearch in Google Scholar

Dautović E, Perišić Nanut M, Softić A, Kos J. The transcription factor C/EBP α controls the role of cystatin F during the differentiation of monocytes to macrophages. Eur J Cell Biol 2018; 97: 463-73. doi: 10.1016/j. ejcb.2018.07.002 Dautović E Perišić Nanut M Softić A Kos J The transcription factor C/EBP α controls the role of cystatin F during the differentiation of monocytes to macrophages Eur J Cell Biol 2018 97 46373 10.1016/j ejcb.2018.07.002Open DOISearch in Google Scholar

Halfon S, Ford J, Foster J, Dowling L, Lucian L, Sterling M, et al. Leukocystatin, A New Class II cystatin expressed selectively by hematopoietic cells. J Biol Chem 1998; 273: 16400-8. doi: 10.1074/jbc.273.26.16400 Halfon S Ford J Foster J Dowling L Lucian L Sterling M Leukocystatin, A New Class II cystatin expressed selectively by hematopoietic cells J Biol Chem 1998 273 164008 10.1074/jbc.273.26.16400Open DOISearch in Google Scholar

Magister S, Kos J. Cystatins in immune system. J Cancer 2013; 4: 45-56. doi: 10.7150/jca.5044 Magister S Kos J Cystatins in immune system J Cancer 2013 4 4556 10.7150/jca.5044Open DOISearch in Google Scholar

Ni J, Fernandez MA, Danielsson L, Chillakuru RA, Zhang J, Grubb A, et al. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J Biol Chem 1998; 273: 24797-804. doi: 10.1074/jbc.273.38.24797 Ni J Fernandez MA Danielsson L Chillakuru RA Zhang J Grubb A Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor J Biol Chem 1998 273 24797804 10.1074/jbc.273.38.24797Open DOISearch in Google Scholar

Cappello F, Gatti E, Camossetto V, David A, Lelouard H, Pierre P. Cystatin F is secreted, but artificial modification of its C-terminus can induce its endocytic targeting. Exp Cell Res 2004; 297: 607-18. doi: 10.1016/j. yexcr.2004.03.048 Cappello F Gatti E Camossetto V David A Lelouard H Pierre P Cystatin F is secreted, but artificial modification of its C-terminus can induce its endocytic targeting Exp Cell Res 2004 297 60718 10.1016/j yexcr.2004.03.048Open DOISearch in Google Scholar

Langerholc T, Zavasnik-Bergant V, Turk B, Turk V, Abrahamson M, Kos J. Inhibitory properties of cystatin F and its localization in U937 promonocyte cells. FEBS J 2005; 272: 1535-45. doi: 10.1111/j.1742-4658.2005.04594.x Langerholc T Zavasnik-Bergant V Turk B Turk V Abrahamson M Kos J Inhibitory properties of cystatin F and its localization in U937 promonocyte cells FEBS J 2005 272 153545 10.1111/j.1742-4658.2005.04594.xOpen DOISearch in Google Scholar

Schüttelkopf AW, Hamilton G, Watts C, van Aalten DMF. Structural basis of reduction-dependent activation of human cystatin F. J Biol Chem 2006; 281: 16570-5. doi: 10.1074/jbc.M601033200 Schüttelkopf AW Hamilton G Watts C van Aalten DMF Structural basis of reduction-dependent activation of human cystatin F J Biol Chem 2006 281 165705 10.1074/jbc.M601033200Open DOISearch in Google Scholar

Hamilton G, Colbert JD, Schuettelkopf AW, Watts C. Cystatin F is a cathepsin C-directed protease inhibitor regulated by proteolysis. EMBO J 2008; 27: 499-508. doi: 10.1038/sj.emboj.7601979 Hamilton G Colbert JD Schuettelkopf AW Watts C Cystatin F is a cathepsin C-directed protease inhibitor regulated by proteolysis EMBO J 2008 27 499508 10.1038/sj.emboj.7601979Open DOISearch in Google Scholar

Colbert JD, Plechanovová A, Watts C. Glycosylation directs targeting and activation of cystatin F from intracellular and extracellular sources. Traffic 2009; 10: 425-37. doi: 10.1111/j.1600-0854.2009.00881.x Colbert JD Plechanovová A Watts C Glycosylation directs targeting and activation of cystatin F from intracellular and extracellular sources Traffic 2009 10 42537 10.1111/j.1600-0854.2009.00881.xOpen DOISearch in Google Scholar

Colbert JD, Matthews SP, Kos J, Watts C. Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms. J Biol Chem 2011; 286: 42082-90. doi: 10.1074/jbc.M111.253914 Colbert JD Matthews SP Kos J Watts C Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms J Biol Chem 2011 286 4208290 10.1074/jbc.M111.253914Open DOISearch in Google Scholar

Perišić Nanut M, Sabotič J, Švajger U, Jewett A, Kos J. Cystatin F affects natural killer cell cytotoxicity. Front Immunol 2017; 8: 1459. doi: 10.3389/fimmu.2017.01459 Perišić Nanut M Sabotič J Švajger U Jewett A Kos J Cystatin F affects natural killer cell cytotoxicity Front Immunol 2017 8 1459 10.3389/fimmu.2017.01459Open DOISearch in Google Scholar

Kos J, Nanut MP, Prunk M, Sabotič J, Dautović E, Jewett A. Cystatin F as a regulator of immune cell cytotoxicity. Cancer Immunol Immunother 2018; 67: 1931-8. doi: 10.1007/s00262-018-2165-5 Kos J Nanut MP Prunk M Sabotič J Dautović E Jewett A Cystatin F as a regulator of immune cell cytotoxicity Cancer Immunol Immunother 2018 67 19318 10.1007/s00262-018-2165-5Open DOISearch in Google Scholar

Perišić Nanut M, Sabotič J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol 2014; 5: 616. doi: 10.3389/fimmu.2014.00616 Perišić Nanut M Sabotič J Jewett A Kos J Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells Front Immunol 2014 5 616 10.3389/fimmu.2014.00616Open DOISearch in Google Scholar

Jewett A, Bonavida B. Target-induced anergy of natural killer cytotoxic function is restricted to the NK-target conjugate subset. Cell Immunol 1995; 160: 91-7. doi: 10.1016/0008-8749(95)80013-9 Jewett A Bonavida B Target-induced anergy of natural killer cytotoxic function is restricted to the NK-target conjugate subset Cell Immunol 1995 160 917 10.1016/0008-8749(95)80013-9Open DOISearch in Google Scholar

Jewett A, Tseng H-C. Tumor induced inactivation of natural killer cell cytotoxic function; implication in growth, expansion and differentiation of cancer stem cells. J Cancer 2011; 2: 443-57. doi: 10.7150/jca.2.443 Jewett A Tseng H-C Tumor induced inactivation of natural killer cell cytotoxic function; implication in growth, expansion and differentiation of cancer stem cells J Cancer 2011 2 44357 10.7150/jca.2.443Open DOISearch in Google Scholar

Choi S, Schwartz RH. Molecular mechanisms for adaptive tolerance and other T cell anergy models. Semin Immunol 2007; 19: 140-52. doi: 10.1016/j. smim.2007.02.005 Choi S Schwartz RH Molecular mechanisms for adaptive tolerance and other T cell anergy models Semin Immunol 2007 19 14052 10.1016/j smim.2007.02.005Open DOISearch in Google Scholar

Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med 1996; 184: 1-8. doi: 10.1084/jem.184.1.1 Schwartz RH Models of T cell anergy: is there a common molecular mechanism? J Exp Med 1996 184 18 10.1084/jem.184.1.1Open DOISearch in Google Scholar

Schweiger A, Stabuc B, Popovíc T, Turk V, Kos J. Enzyme-linked immunosorbent assay for the detection of total cathepsin H in human tissue cytosols and sera. J Immunol Methods 1997; 201: 165-72. doi: 10.1016/S0022-1759(96)00218-9 Schweiger A Stabuc B Popovíc T Turk V Kos J Enzyme-linked immunosorbent assay for the detection of total cathepsin H in human tissue cytosols and sera J Immunol Methods 1997 201 16572 10.1016/S0022-1759(96)00218-9Open DOISearch in Google Scholar

Kos J, Stabuc B, Schweiger A, Krasovec M, Cimerman N, Kopitar-Jerala N, et al. Cathepsins B, H, and L and their inhibitors stefin A and cystatin C in sera of melanoma patients. Clin Cancer Res 1997; 3: 1815-22. Kos J Stabuc B Schweiger A Krasovec M Cimerman N Kopitar-Jerala N Cathepsins B, H, and L and their inhibitors stefin A and cystatin C in sera of melanoma patients Clin Cancer Res 1997 3 181522Search in Google Scholar

O’Connor R, Cesano A, Lange B, Finan J, Nowell PC, Clark SC, et al. Growth factor requirements of childhood acute T-lymphoblastic leukemia: correlation between presence of chromosomal abnormalities and ability to grow permanently in vitro. Blood 1991; 77: 1534-45. O’Connor R Cesano A Lange B Finan J Nowell PC Clark SC Growth factor requirements of childhood acute T-lymphoblastic leukemia: correlation between presence of chromosomal abnormalities and ability to grow permanently in vitro Blood 1991 77 153445Search in Google Scholar

Cesano A, Santoli D. Two unique human leukemic T-cell lines endowed with a stable cytotoxic function and a different spectrum of target reactivity analysis and modulation of their lytic mechanisms. In Vitro Cell Dev Biol 1992; 28A: 648-56. Cesano A Santoli D Two unique human leukemic T-cell lines endowed with a stable cytotoxic function and a different spectrum of target reactivity analysis and modulation of their lytic mechanisms In Vitro Cell Dev Biol 1992 28A 64856Search in Google Scholar

Li Y, Kurlander RJ. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation. J Transl Med 2010; 8: 104. doi: 10.1186/1479-5876-8-104. Li Y Kurlander RJ Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: differing impact on CD8 T cell phenotype and responsiveness to restimulation J Transl Med 2010 8 104 10.1186/1479-5876-8-104Open DOISearch in Google Scholar

Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R. CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J Immunol Methods 1994; 172: 227-39. doi: 10.1016/0022-1759(94)90110-4 Lichtenfels R Biddison WE Schulz H Vogt AB Martin R CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity J Immunol Methods 1994 172 22739 10.1016/0022-1759(94)90110-4Open DOISearch in Google Scholar

Magister S, Tseng H-C, Bui VT, Kos J, Jewett A. Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F. Oncotarget 2015; 6: 22310-27. doi: 10.18632/oncotarget.4208 Magister S Tseng H-C Bui VT Kos J Jewett A Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F Oncotarget 2015 6 2231027 10.18632/oncotarget.4208Open DOISearch in Google Scholar

Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005; 8: 369-80. doi: 10.1016/j.ccr.2005.10.012 Thomas DA Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance Cancer Cell 2005 8 36980 10.1016/j.ccr.2005.10.012Open DOISearch in Google Scholar

Nathanson C-M, Wassélius J, Wallin H, Abrahamson M. Regulated expression and intracellular localization of cystatin F in human U937 cells. Eur J Biochem 2002; 269: 5502-11. doi: 10.1046/j.1432-1033.2002.03252.x Nathanson C-M Wassélius J Wallin H Abrahamson M Regulated expression and intracellular localization of cystatin F in human U937 cells Eur J Biochem 2002 269 550211 10.1046/j.1432-1033.2002.03252.xOpen DOISearch in Google Scholar

Massagué J. TGFbeta in cancer. Cell 2008; 134: 215-30. doi: 10.1016/j. cell.2008.07.00 Massagué J. TGFbeta in cancer Cell 2008 134 21530 10.1016/j cell.2008.07.00Open DOISearch in Google Scholar

Dahmani A, Delisle J-S. TGF-β in T Cell Biology: Implications for cancer immunotherapy. Cancers 2018; 10. doi: 10.3390/cancers10060194 Dahmani A Delisle J-S TGF-β in T Cell Biology: Implications for cancer immunotherapy Cancers 2018 10 10.3390/cancers10060194Open DOISearch in Google Scholar

Visonneau S, Cesano A, Porter DL, Luger SL, Schuchter L, Kamoun M, et al. Phase I trial of TALL-104 cells in patients with refractory metastatic breast cancer. Clin Cancer Res 2000; 6: 1744-54. Visonneau S Cesano A Porter DL Luger SL Schuchter L Kamoun M Phase I trial of TALL-104 cells in patients with refractory metastatic breast cancer Clin Cancer Res 2000 6 174454Search in Google Scholar

Bengala C, Rasini V, Sternieri R, Dominici M, Andreotti A, Gelmini R, et al. Phase I study of intraperitoneal MHC unrestricted adoptive cell therapy with TALL-104 cells in patients with peritoneal carcinosis. J Clin Oncol 2007; 25: 3054-3054. doi: 10.1200/jco.2007.25.18_suppl.3054 Bengala C Rasini V Sternieri R Dominici M Andreotti A Gelmini R Phase I study of intraperitoneal MHC unrestricted adoptive cell therapy with TALL-104 cells in patients with peritoneal carcinosis J Clin Oncol 2007 25 30543054 10.1200/jco.2007.25.18_suppl.3054Open DOISearch in Google Scholar

Conte PF, Accoto M, Nannipieri F, Baretta Z, Baldoni A, Bonanno L, et al. Phase II trial of intraperitoneal (IP) MHC unrestricted adoptive cell therapy with TALL-104 cells in patients with ovarian carcinoma (OC) with minimal or microscopic residual disease at second look laparotomy/laparoscopy. Ann Oncol 2015; 26: viii10-viii11. doi: 10.1093/annonc/mdv514.21 Conte PF Accoto M Nannipieri F Baretta Z Baldoni A Bonanno L Phase II trial of intraperitoneal (IP) MHC unrestricted adoptive cell therapy with TALL-104 cells in patients with ovarian carcinoma (OC) with minimal or microscopic residual disease at second look laparotomy/laparoscopy Ann Oncol 2015 26 viii10viii11 10.1093/annonc/mdv514.21Open DOISearch in Google Scholar

Macián F, García-Cózar F, Im S-H, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 2002; 109: 719-31. doi: 10.1016/S0092-8674(02)00767-5 Macián F García-Cózar F Im S-H Horton HF Byrne MC Rao A Transcriptional mechanisms underlying lymphocyte tolerance Cell 2002 109 71931 10.1016/S0092-8674(02)00767-5Open DOISearch in Google Scholar

Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME, et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 2015; 42: 265-78. doi: 10.1016/j.immuni.2015.01.006 Martinez GJ Pereira RM Äijö T Kim EY Marangoni F Pipkin ME The transcription factor NFAT promotes exhaustion of activated CD8+ T cells Immunity 2015 42 26578 10.1016/j.immuni.2015.01.006Open DOISearch in Google Scholar

Yamada A, Ishimaru N, Arakaki R, Katunuma N, Hayashi Y. Cathepsin L inhibition prevents murine autoimmune diabetes via suppression of CD8+ T cell activity. PLoS ONE 2010; 5. doi: 10.1371/journal.pone.0012894 Yamada A Ishimaru N Arakaki R Katunuma N Hayashi Y Cathepsin L inhibition prevents murine autoimmune diabetes via suppression of CD8+ T cell activity PLoS ONE 2010 5 10.1371/journal.pone.0012894Open DOISearch in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology