Open Access

NADPH oxidase inhibitor VAS2870 prevents staurosporine-induced cell death in rat astrocytes


Cite

Wozniak W. Ependymal cells and astrocytes generate neurones. Folia Morphol (Warsz) 1999; 58(3 Suppl 2): 7-11. PMID: 10959256 Wozniak W Ependymal cells and astrocytes generate neurones Folia Morphol (Warsz) 1999 583 Suppl 2 711 PMID: 10959256Search in Google Scholar

Magistretti PJ, Pellerin L. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 1999; 14: 177-82. PMID: 11390847 Magistretti PJ Pellerin L Astrocytes couple synaptic activity to glucose utilization in the brain News Physiol Sci 1999 14 17782 PMID: 11390847Search in Google Scholar

Perea G, Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science 2007; 317: 1083-86. doi: 10.1038/s41419-017-0021-8 Perea G Araque A Astrocytes potentiate transmitter release at single hippocampal synapses Science 2007 317 108386 10.1126/science.1144640Open DOISearch in Google Scholar

Stogsdill JA, Ramirez J, Liu D, Kim, YH, Baldwin KT, Enustun E, et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017; 551: 192-97. doi: 10.1038/s41419-017-0021-8 Stogsdill JA Ramirez J Liu D Kim YH Baldwin KT Enustun E et al Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis Nature 2017 551 19297 10.1038/nature24638Open DOISearch in Google Scholar

Papouin T, Dunphy J, Tolman M, Foley JC, Haydon PG. Astrocytic control of synaptic function. Philos Trans R Soc Lond B Biol Sci 2017; 5: 372(1715) pii:20160154. doi: 10.1038/s41419-017-0021-8 Papouin T Dunphy J Tolman M Foley JC Haydon PG Astrocytic control of synaptic function Philos Trans R Soc Lond B Biol Sci 2017 5 3721715 pii:20160154 doi 10.1098/rstb.2016.0154Open DOISearch in Google Scholar

Song JH, Bellail A, Tse CLM, Yong Wee V, Hao C. Human astrocytes are resistant to Fas ligand and Tumor necrosis factor related apoptosis inducing ligand induced apoptosis. J Neurosci 2006; 26: 3299-308. doi: 10.1038/s41419-017-0021-8 Song JH Bellail A Tse CLM Yong Wee V Hao C Human astrocytes are resistant to Fas ligand and Tumor necrosis factor related apoptosis inducing ligand induced apoptosis J Neurosci 2006 26 3299308 10.1523/JNEUROSCI.5572-05.2006Open DOISearch in Google Scholar

Jurič DM, Finderle Ž, Šuput D, Brvar M. The effectiveness of oxygen therapy in carbon monoxide poisoning is pressure- and time-dependent: a study on cultured astrocytes. Toxicol Lett 2015; 233: 16-23. doi: 10.1038/s41419-017-0021-8 Jurič DM Finderle Ž Šuput D Brvar M The effectiveness of oxygen therapy in carbon monoxide poisoning is pressure- and time-dependent: a study on cultured astrocytes Toxicol Lett 2015 233 1623 10.1016/j.toxlet.2015.01.004Open DOISearch in Google Scholar

Leyns CEG, Holtzman D. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017; 12: 50. doi: 10.1038/s41419-017-0021-8 Leyns CEG Holtzman D Glial contributions to neurodegeneration in tauopathies Mol Neurodegener 2017 12 50 doi 10.1186/s13024-017-0192-xOpen DOISearch in Google Scholar

Dos Santos AA, López-Granero C, Farina M, Rocha JBT, Bowman AB, Aschner M. Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113: 328-36. doi: 10.1038/s41419-017-0021-8 Dos Santos AA López-Granero C Farina M Rocha JBT Bowman AB Aschner M Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells Food Chem Toxicol 2018 113 32836 10.1016/j.fct.2018.01.057Open DOISearch in Google Scholar

Jiang YG, Peng Y, Koussougbo KS. Necroptosis: a novel therapeutic target for glioblastoma. Med Hypotheses 2011; 76: 350-52. doi: 10.1038/s41419-017-0021-8 Jiang YG Peng Y Koussougbo KS Necroptosis: a novel therapeutic target for glioblastoma Med Hypotheses 2011 76 35052 10.1016/j.mehy.2010.10.037Open DOISearch in Google Scholar

Fulda S. Cell death-based treatment of glioblastoma. Cell Death Dis 2018; 9: 121. doi: 10.1038/s41419-017-0021-8 Fulda S Cell death-based treatment of glioblastoma Cell Death Dis 2018 9 121 doi 10.1038/s41419-017-0021-8Open DOISearch in Google Scholar

Smrdel U, Skoblar-Vidmar M, Smrdel A. Glioblastoma in patients over 70 years of age. Radiol Oncol 2018; 52: 167-72. doi: 10.1038/s41419-017-0021-8 Smrdel U Skoblar-Vidmar M Smrdel A Glioblastoma in patients over 70 years of age Radiol Oncol 2018 52 16772 10.2478/raon-2018-0010Open DOISearch in Google Scholar

Kazda T, Dziacky A, Burkon P, Pospisil P, Slavik M, Rehak Z, et al. Daily clinical radiotherapy of glioblastoma 15 years after the landmark Stupp´ trial: more controversies than standards? Radiol Oncol 2018; 52: 121-8. doi: 10.1038/s41419-017-0021-8 Kazda T Dziacky A Burkon P Pospisil P Slavik M Rehak Z et al Daily clinical radiotherapy of glioblastoma 15 years after the landmark Stupp´ trial: more controversies than standards? Radiol Oncol 2018 52 1218 10.2478/raon-2018-0023Open DOISearch in Google Scholar

Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nature Rev 2008; 9: 231-41. doi: 10.1038/s41419-017-0021-8 Taylor RC Cullen SP Martin SJ Apoptosis: controlled demolition at the cellular level Nature Rev 2008 9 23141 10.1038/nrm2312Open DOISearch in Google Scholar

Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ishemic brain injury. Nat Chem Biol 2005; 2: 112-9. doi: 10.1038/s41419-017-0021-8 Degterev A Huang Z Boyce M Li Y Jagtap P Mizushima N et al Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ishemic brain injury Nat Chem Biol 2005 2 1129 10.1038/nchembio711Open DOISearch in Google Scholar

Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191-5. doi: 10.1038/s41419-017-0021-8 Scaffidi P Misteli T Bianchi ME Release of chromatin protein HMGB1 by necrotic cells triggers inflammation Nature 2002 418 1915 10.1038/nature00858Open DOISearch in Google Scholar

Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3 dependent necrosis. Nature 2011; 471: 363-7. doi: 10.1038/s41419-017-0021-8 Oberst A Dillon CP Weinlich R McCormick LL Fitzgerald P Pop C et al Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3 dependent necrosis Nature 2011 471 3637 10.1038/nrm3214Open DOISearch in Google Scholar

Ricci JE, Muñoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase clevage of the p75 subunit of complex I of the electron transport chain. Cell 2004; 117: 773-86. doi: 10.1038/s41419-017-0021-8 Ricci JE Muñoz-Pinedo C Fitzgerald P Bailly-Maitre B Perkins GA Yadava N et al Disruption of mitochondrial function during apoptosis is mediated by caspase clevage of the p75 subunit of complex I of the electron transport chain Cell 2004 117 77386 10.1016/j.cell.2004.05.008Open DOISearch in Google Scholar

Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009; 325: 332-6. doi: 10.1038/s41419-017-0021-8 Zhang DW Shao J Lin J Zhang N Lu BJ Lin SC et al RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis Science 2009 325 3326 10.1126/science.1172308Open DOISearch in Google Scholar

Dong W, Li Z, Chen Y, Zhang L, Ye Z, Liang H, et al. NADPH oxidase inhibitor, diphenyleneiodonium prevents necroptosis in HK-2 cells. Biomed Rep 2017; 7: 226-30. doi: 10.1038/s41419-017-0021-8 Dong W Li Z Chen Y Zhang L Ye Z Liang H et al NADPH oxidase inhibitor, diphenyleneiodonium prevents necroptosis in HK-2 cells Biomed Rep 2017 7 22630 10.3892/br.2017.948Open DOISearch in Google Scholar

Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal 2014; 20: 2815-37. doi: 10.1038/s41419-017-0021-8 Nayernia Z Jaquet V Krause KH New insights on NOX enzymes in the central nervous system Antioxid Redox Signal 2014 20 281537 10.1089/ars.2013.5703Open DOISearch in Google Scholar

Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 2017; 174: 1733-49. doi: 10.1038/s41419-017-0021-8 Haslund-Vinding J McBean G Jaquet V Vilhardt F NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease Br J Pharmacol 2017 174 173349 10.1111/bph.13425Open DOISearch in Google Scholar

Simenc J, Lipnik-Stangelj M. Staurosporine induces different cell death forms in cultured rat astrocytes. Radiol Oncol 2012; 46: 312-20. doi: 10.1038/s41419-017-0021-8 Simenc J Lipnik-Stangelj M Staurosporine induces different cell death forms in cultured rat astrocytes Radiol Oncol 2012 46 31220 10.2478/v10019-012-0036-9Open DOISearch in Google Scholar

Šimenc J, Lipnik-Štangelj M. Staurosporine induces apoptosis and necroptosis in cultured rat astrocytes. Drug Chem Toxicol 2012; 35: 399405. doi: 10.1038/s41419-017-0021-8 Šimenc J Lipnik-Štangelj M Staurosporine induces apoptosis and necroptosis in cultured rat astrocytes Drug Chem Toxicol 2012 35 399405 doi 10.3109/01480545.2011.633087Open DOISearch in Google Scholar

Belmokhtar AC, Hillion J, Segal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 2001; 20: 3354-62. doi: 10.1038/s41419-017-0021-8 Belmokhtar AC Hillion J Segal-Bendirdjian E Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms Oncogene 2001 20 335462 10.1038/sj.onc.1204436Open DOISearch in Google Scholar

Zhang XD, Gillespie SK, Hersey P. Staurosporine induces apoptosis of melanoma by both caspase dependent and independent apoptotic pathways. Mol Cancer Ther 2004; 3: 187-97. PMID: 14985459 Zhang XD Gillespie SK Hersey P Staurosporine induces apoptosis of melanoma by both caspase dependent and independent apoptotic pathways Mol Cancer Ther 2004 3 18797 PMID: 14985459Search in Google Scholar

D’Alimonte I, Ballerini P, Nargi E, Buccella S, Giuliani P, Di Iorio P, et al. Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation. Neurosci Lett 2007; 418: 66-71. doi: 10.1038/s41419-017-0021-8 D’Alimonte I Ballerini P Nargi E Buccella S Giuliani P Di Iorio P et al Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation Neurosci Lett 2007 418 6671 10.1016/j.neulet.2007.02.061Open DOISearch in Google Scholar

Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997; 8: 1481-6. doi: 10.1038/s41419-017-0021-8 Leist M Single B Castoldi AF Kühnle S Nicotera P Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis J Exp Med 1997 8 14816 10.1084/jem.185.8.1481Open DOISearch in Google Scholar

Jantas D, Krawczyk S, Lason W. The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways. Neurotox Res 2014; 25: 208-25. doi: 10.1038/s41419-017-0021-8 Jantas D Krawczyk S Lason W The predominant protective effect of tianeptine over other antidepressants in models of neuronal apoptosis: the effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways Neurotox Res 2014 25 20825 10.1007/s12640-013-9430-3Open DOISearch in Google Scholar

ten Freyhaus H, Huntgeburth M, Wingler K, Schitker J, Bäumer AT, Vantler M, et al. Novel Nox inhibitor VAS2870 attenuates PDGF dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 2006; 71: 33141. doi: 10.1038/s41419-017-0021-8 ten Freyhaus H Huntgeburth M Wingler K Schitker J Bäumer AT Vantler M et al Novel Nox inhibitor VAS2870 attenuates PDGF dependent smooth muscle cell chemotaxis, but not proliferation Cardiovasc Res 2006 71 33141 doi 10.1016/j.cardiores.2006.01.022Open DOISearch in Google Scholar

Kim SY, Morgan MJ, Choksi S, Liu ZG. TNF induced activation of the Nox 1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 2007; 26: 675-87. doi: 10.1038/s41419-017-0021-8 Kim SY Morgan MJ Choksi S Liu ZG TNF induced activation of the Nox 1 NADPH oxidase and its role in the induction of necrotic cell death Mol Cell 2007 26 67587 10.1016/j.molcel.2007.04.021Open DOISearch in Google Scholar

Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukenc B, Zobel K, Deshayes K, et al. cIAP1 and TAK1 protect cells from TNF induced necrosis by preventing RIP1/RIP3 dependent reactive oxygen species production. Cell Death Differ 2011; 18: 656-65. doi: 10.1038/s41419-017-0021-8 Vanlangenakker N Vanden Berghe T Bogaert P Laukenc B Zobel K Deshayes K et al cIAP1 and TAK1 protect cells from TNF induced necrosis by preventing RIP1/RIP3 dependent reactive oxygen species production Cell Death Differ 2011 18 65665 10.1038/cdd.2010Open DOISearch in Google Scholar

Olguín-Albuerne M, Domínguez G, Morán J. Effect of staurosporine in the morphology and viability of cerebellar astrocytes: role of reactive oxygen species and NADPH oxidase. Oxid Med Cell Longev 2014; 2014: 678371. doi: 10.1038/s41419-017-0021-8 Olguín-Albuerne M Domínguez G Morán J Effect of staurosporine in the morphology and viability of cerebellar astrocytes: role of reactive oxygen species and NADPH oxidase Oxid Med Cell Longev 2014 2014 678371 doi 10.1155/2014/678371Open DOISearch in Google Scholar

Laird MD, Wakade C, Alleyne CH, Dhandapani KM. Hemin induced necroptosis involves glutation depetion in mouse astrocytes. Free Radic Biol Med 2008; 45: 1103-14. doi: 10.1038/s41419-017-0021-8 Laird MD Wakade C Alleyne CH Dhandapani KM Hemin induced necroptosis involves glutation depetion in mouse astrocytes Free Radic Biol Med 2008 45 110314 10.1016/j.freeradbiomed.2008.07.003Open DOISearch in Google Scholar

Liu Q, Kang JH, Zheng RL. NADPH oxidase produces reactive oxygen species and maintain survival of rat astrocytes. Cell Biochem Funct 2005; 2: 93-100. doi: 10.1038/s41419-017-0021-8 Liu Q Kang JH Zheng RL NADPH oxidase produces reactive oxygen species and maintain survival of rat astrocytes Cell Biochem Funct 2005 2 93100 10.1002/cbf.1171Open DOISearch in Google Scholar

Cabezas R, El-Bachá RS, González J, Barreto GE. Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 2012; 74: 80-90. doi: 10.1038/s41419-017-0021-8 Cabezas R El-Bachá RS González J Barreto GE Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone Neurosci Res 2012 74 8090 10.1016/j.neures.2012.07.008Open DOISearch in Google Scholar

Kozieł R, Pircher H, Kratochwil M, Lener B, Hermann M, Dencher NA, et al. Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox 4. Biochem J 2013; 452: 231-9. doi: 10.1038/s41419-017-0021-8 Kozieł R Pircher H Kratochwil M Lener B Hermann M Dencher NA et al Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox 4 Biochem J 2013 452 2319 10.1042/BJ20121778Open DOISearch in Google Scholar

Remijsen Q, Goossens V, Grootjans S, Van de Haute C, Vanlangenakker N, Dondelinger Y, et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 2014; 5: e1004. doi:10.1038/cddis.2013.531 Remijsen Q Goossens V Grootjans S Van de Haute C Vanlangenakker N Dondelinger Y et al Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis Cell Death Dis 2014 5 e1004 doi10.1038/cddis.2013.531Open DOISearch in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology